Project description:Spiroplasma eriocheiris, has been identified as a novel lethal pathogen of Eriocheir sinensis tremor disease (TD), one neurological disease with typically paroxysmal tremors of the pereiopod. This pathogen infected and multiplied in the hemocytes of E. sinensis as the first target cells, and then follow the blood circulation to infect the crab other tissues. S. eriocheiris infected the nerves tissue is the directly reason of TD. But the pathogenic mechanism of TD was still few known. Firstly, in the current study, the phosphoproteomic changes of E. sinensis thoracic ganglion after S. eriocheiris infection were obtained. KEGG pathway analysis show Wnt signaling pathways was restrained, corresponding many nervous system development and signal transmission pathway also destroyed. Base on the identified modified sequence, several peptides (GSK3β, SYN, VAMP and SNAMP-25) were selected to synthesize chemically and prepare phosphorylated antibodies. The differentially expressed phosphorylated proteins GSK3β-pSer9, VAMP-pSer72, SNAP25-pSer102, and SYN-pSer134 in thoracic ganglion were significantly down-regulated verified by immunohistochemistry and western blot, this results are similar with the phosphoproteomic. By qRT-PCR, western blot, RNA interference and inhibitor experiments, when the S. eriocheiris infected the hemocytes of crab, the GSK-3β and β-Catenin in Wnt-β-Catenin pathway were restrained similar in the thoracic ganglion. The S. eriocheiris can restricts the hemocytes Wnt-β-Catenin pathway to help itself infection no matter in vivo or in vitro. Neurotransmitter metabolite analysis showed that four kinds of neurotransmitters (5-Hydroxy-L-tryptophan, Serotonin, Acetylcholine and γ-Amino-butyric acid) in thoracic ganglion were metabolic disorders in E. sinensis thoracic ganglion after S. eriocheiris infection. The present work could serve as a basis for understanding the role of Wnt signaling pathway in the process of S. eriocheiris invasion E. sinensis hemocytes and causing paroxysmal tremors of E. sinensis the pereiopod.
Project description:Ruminiclostridium thermocellum DSM 1313 strain adhE*(EA) expression was studied along with ∆hydG and ∆hydG∆ech mutants strains deposited under GSE54082. All strains have been described in a study entitled Elimination of hydrogenase post-translational modification blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biswas, et .al. Biotechnology for Biofuels 2015 8:20 Ruminiclostridium (Clostridium) thermocellum is a leading candidate organism for implementing a consolidated bioprocessing (CBP) strategy for biofuel production due to its native ability to rapidly consume cellulose and its existing ethanol production pathway. C. thermocellum converts cellulose and cellobiose to lactate, formate, acetate, H2, ethanol, amino acids, and other products. Elimination of the pathways leading to products such as H2 could redirect carbon flux towards ethanol production. Rather than delete each hydrogenase individually, we targeted a hydrogenase maturase gene (hydG), which is involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes by assembling the active site. This functionally inactivated all three Fe-Fe hydrogenases simultaneously, as they were unable to make active enzymes. In the ∆hydG mutant, the [NiFe] hydrogenase-encoding ech was also deleted to obtain a mutant that functionally lacks all hydrogenase. The ethanol yield increased nearly 2-fold in ∆hydG∆ech compared to wild type, and H2 production was below the detection limit. Interestingly, ∆hydG and ∆hydG∆ech exhibited improved growth in the presence of acetate in the medium. Transcriptomic and proteomic analysis reveal that genes related to sulfate transport and metabolism were up-regulated in the presence of added acetate in ∆hydG, resulting in altered sulfur metabolism. Further genomic analysis of this strain revealed a mutation in the bi-functional alcohol/aldehyde dehydrogenase adhE gene, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities, whereas the wild type strain can only utilize NADH. This is the exact same adhE mutation found in ethanol-tolerant C. thermocellum strain E50C, but ∆hydG∆ech is not more ethanol tolerant than the wild type. Targeting protein post-translational modification is a promising new approach to target multiple enzymes simultaneously for metabolic engineering. This GEO study pertains to expression profiles generated for C. thermocellum DSM 1313 strain adhE*(EA)
Project description:Investigation of whole genome gene expression level changes in Lactococcus lactis KCTC 3769T,L. raffinolactis DSM 20443T, L. plantarum DSM 20686T, L. fujiensis JSM 16395T, L. garvieae KCTC 3772T, L. piscium DSM 6634T and L. chungangensis CAU 28T . This proves that transcriptional profiling can facilitate in elucidating the genetic distance between closely related strains.