Project description:Both single cell and bulk RNA sequencing was performed on expanding or differentiating snake venom gland organoids (from Aspidelaps Lubricus Cowlesi and Naja Nivea), or tissue (Aspidelaps Lubricus Cowlesi). Bulk RNA sequencing from the snake venom gland, liver and pancreas was performed to construct a de novo transcriptome using Trinity.
Project description:Venomous animals have traditionally been studied from a proteomic (but also transcriptomic) perspective, often overlooking the study of venom from a genomic point of view until recently. The rise of genomics has led to an increase in the number of reference genomes for non-model organisms, including venomous taxa, enabling new questions on venom evolution from a genomic context. Although venomous snakes are the fundamental model system in venom research, the number of high-quality reference genomes in the group remains limited. In this study, we present a high-quality chromosome-level reference genome for the Arabian horned viper (Cerastes gasperettii), a highly venomous snake native to the Arabian Peninsula. Our highly-contiguous genome allowed us to explore macrochromosomal rearrangements within the Viperidae family, as well as across squamate reptile evolution. Furthermore, we identified a total of ten different toxins conforming the venom’s core, in line with our proteomic results. We also compared microsyntenic changes in the main toxin gene clusters with those of other venomous snake species, highlighting the pivotal role of gene duplication and loss in the emergence and diversification of the two main toxin families for Cerastes gasperettii. Using Illumina data, we reconstructed the demographic history and genome-wide diversity of the species, revealing how historical aridity likely drove population expansions. Finally, this study highlights the importance of using long-read sequencing as well as chromosome-level reference genomes to disentangle the origin and diversification of toxin families in venomous species.
Project description:Venomous animals have traditionally been studied from a proteomic (but also transcriptomic) perspective, often overlooking the study of venom from a genomic point of view until recently. The rise of genomics has led to an increase in the number of reference genomes for non-model organisms, including venomous taxa, enabling new questions on venom evolution from a genomic context. Although venomous snakes are the fundamental model system in venom research, the number of high-quality reference genomes in the group remains limited. In this study, we present a high-quality chromosome-level reference genome for the Arabian horned viper (Cerastes gasperettii), a highly venomous snake native to the Arabian Peninsula. Our highly-contiguous genome allowed us to explore macrochromosomal rearrangements within the Viperidae family, as well as across squamate reptile evolution. Furthermore, we identified a total of ten different toxins conforming the venom’s core, in line with our proteomic results. We also compared microsyntenic changes in the main toxin gene clusters with those of other venomous snake species, highlighting the pivotal role of gene duplication and loss in the emergence and diversification of the two main toxin families for Cerastes gasperettii. Using Illumina data, we reconstructed the demographic history and genome-wide diversity of the species, revealing how historical aridity likely drove population expansions. Finally, this study highlights the importance of using long-read sequencing as well as chromosome-level reference genomes to disentangle the origin and diversification of toxin families in venomous species.
Project description:The Mojave rattlesnake (Crotalus scutulatus scutulatus) is classified as the “highest medically important” snake in the risk categories in the United States. Although responsible for fewer snakebite envenomations and deaths compared to other species, Mojave rattlesnake venom is poorly characterized and shows significant geographical variability. The venom of Type A animals primarily contains the β-neurotoxin referred to as Mojave Toxin (MTX), which is responsible for the neurotoxic effects that make bites from this snake particularly feared. Previous studies have shown that β-neurotoxin from different snake species produced similar but complex effects by mechanisms that are not fully understood. We performed a genome-wide transcriptomic analysis of the neurocellular response to Mojave Type A rattlesnake venom using induced pluripotent stem cell (iPSC) -derived human neural stem cells (NSCs) to unveil the molecular mechanisms underlying the damage caused by this snake’s envenomation. Our results suggest that snake venom metalloproteases (svMPs), although have a limited repertoire in type A animal venom, facilitate venom spread by digesting tissue's extracellular matrix. The MTX, which is composed of heterodimers of basic and acidic phospholipase A2 (PLA2) and is the dominant constituent of this venom, co-opts the host arachidonic acid and Ca2+ second messenger mechanisms in a dose- and time-dependent escalating venom damage. The release of arachidonic acid and the rapid increase in intracellular Ca2+ caused by the PLA2 activity of MTX triggers multiple signaling cascades. The activation of MAPKs and NF-κB regulated proinflammatory cascades were the top enriched pathways in the shorter 4-hour NSC response to venom challenge and suggest a significant role of PKC-δ in the activation of MAPKs. The rapid increase in intercellular Ca2+ and resulting cellular depolarization plausibly have a role in neurotransmitter overload in the cholinergic and glutamatergic excitatory synapses and MTX-induced presynaptic blockade of nerve signals. The expression of the acetylcholinesterase gene (ACHE), which degrades acetylcholine, and the downregulation of GRIK1 and GRIK3 genes, which encode KA-iGluRs proteins suggest a cellular response to neurotransmitter overload in the excitatory synapses. Our results also show that the MTX/svPLA2 mediated dysregulation of Ca2+ homeostasis, particularly depletion from the endoplasmic reticulum (ER), causes ER stress and upregulation of unfolded protein response (UPR). The UPR and the oxidative stress caused by ROS generated in CYP1A1-mediated hydroxylation of arachidonic acid, contribute to mitochondrial membrane permeabilization. The activation of UPR, mitochondrial toxicity, and oxidative stress, constitute the degenerative phase of the venom challenge in NSCs and synergistically contribute to apoptotic and ferroptotic programmed cell death.
Project description:Pathological and inflammatory events in muscle after injection of snake venoms vary in different regions of the affected tissue and at different time intervals. In order to study such heterogeneity in the immune cell microenvironment, a murine model of muscle necrosis based on the injection of the venom of Daboia russelii was used.
Project description:Cellular and inflammatory events were evaluated in mouse muscle after snake venoms Daboia russelii and Bothrops asper injection over time. A murine model of muscle necrosis based on venom injection was used to investigate up to 800 genes involved in fibrosis diseases and tissue regeneration using the multiplex RNA panel Fibrosis V2 from NanoString technology.
Project description:Venoms and the toxins they contain represent molecular adaptations that have evolved on numerous occasions throughout the animal kingdom. However, the processes that shape venom protein evolution are poorly understood because of the scarcity of whole genome data available for comparative analyses of venomous species. Here, we perform a broad comparative toxicogenomic analysis to gain insight into the genomic mechanisms of venom evolution in robber flies (Asilidae). We first sequenced a high-quality draft genome of the hymenopteran hunting robber fly Dasypogon diadema, and analysed its venom by a combined proteotranscriptomic approach, and compared our results to recently described robber fly venoms to assess the general composition and major components of asilid venom. We then applied a comparative genomics approach, based on one additional asilid genome, ten high-quality dipteran genomes, and two lepidopteran outgroup-genomes, to reveal the evolutionary mechanisms and origins of identified venom proteins in robber flies. While some venom proteins were identified in the non-asilid genomes, several of the identified highly expressed venom proteins appear to be unique to robber flies. Our results reveal that the venom of D. diadema likely evolves in a multimodal fashion comprising 1) neofunctionalization after gene duplication, 2) expression-dependent co-option of proteins and 3) asilid lineage-specific orphan genes with enigmatic origin. The role of such orphan genes is currently being disputed in evolutionary genomics, but has not yet discussed in the context of toxin evolution. Our results display an unexpected dynamic venom evolution in asilid insects, which contrasts the findings of the only other insect toxicogenomic evolutionary analysis, in parasitoid wasps (Hymenoptera), were toxin evolution is dominated by single gene co-option.
Project description:Venoms are ecological innovations that have evolved numerous times, on each occasion accompanied by the co-evolution of specialised morphological and behavioural characters for venom production and delivery. The close evolutionary interdependence between these characters is exemplified by animals that control the composition of their secreted venom. This ability depends in part on the production of different toxins in different locations of the venom gland, which was recently documented in venomous snakes. Here, we test the hypothesis that the distinct spatial distributions of toxins in snake venom glands is an adaptation that enables the secretion of venoms with distinct ecological functions.