Project description:The leucine CUG codon was reassigned to serine in the fungal pathogen Candida albicans. To clarify the biological role of this tuneable codon ambiguity on drug resistance, we evolved C. albicans strains that were engineered to mistranslate the CUG codon at constitutively elevated levels, in the presence and absence of the antifungal drug fluconazole. Elevated levels of mistranslation resulted in the rapid acquisition of resistance to fluconazole.
Project description:Aneuploidy and the evolution of aneuploid karyotypes of Candida albicans strains was identified using aCGH. Whole chromosome and segmental aneuploidies, (specifically on the left arm of chromosome 5 - shown to be due to isochromosome formation) are associated with the appearance of resistance to the antifungal drug fluconazole. Keywords: Comparative Genomic Hybridization
Project description:Aneuploidy and the evolution of aneuploid karyotypes of Candida albicans strains was identified using aCGH. Whole chromosome and segmental aneuploidies, (specifically on the left arm of chromosome 5 - shown to be due to isochromosome formation) are associated with the appearance of resistance to the antifungal drug fluconazole. Keywords: Comparative Genomic Hybridization Hybridization of all strains was compared to the hybridization of SC5314, the sequenced laboratory strain.
Project description:Natural product cinnamaldehyde has significant antifungal activities, and its inhibitory activity against Candida albicans has been reported. Up to now, there are few reports on the changes in the transcriptome of Candida albicans after cinnamaldehyde treatment. Here, RNA sequencing analysis of samples obtained from Candida albicans cells grown in the presence or absence of cinnamaldehyde was performed. A total of 123 differentially expressed genes were identified, of which 15 genes were up-regulated and 108 genes were down-regulated.
Project description:Candida yeasts causing human infections are spread across the yeast phylum with Candida glabrata being related to Saccharomyces cerevisiae, Candida krusei grouping to Pichia spp., and Candida albicans, Candida parapsilosis and Candida tropicalis belonging to the CTG-clade. The latter lineage contains yeasts with an altered genetic code translating CUG codons as serine using a serine-tRNA with a mutated anticodon. It has been suggested that the CTG-clade CUG codons are mistranslated to a small extent as leucine due to mischarging of the serine-tRNA(CAG). The mistranslation was suggested to result in variable surface proteins explaining fast host adaptation and pathogenicity. Here, we re-assessed this potential mistranslation by high-resolution mass spectrometry-based proteogenomics of multiple CTG-clade yeasts, various C. albicans strains, isolated from colonized and from infected human body sites, and C. albicans grown in yeast and hyphal forms.