ABSTRACT: investigation of the pathogenesis of H1N1 influenza virus and swine streptococcus suis serotype 2 co-infection in pigs by microarray analysis
Project description:Swine H1N1 influenza virus and streptococcus suis serotype 2 (SS2) are two important contributors to the porcine respiratory disease complex, which have significant economic impacts. Clinically, swine influenza virus and swine streptococcus suis co-infection is common, which will increase the mortality. However, the pathogenesis of the co-infection remains largely unkown. To explore it, gene expression profiling was to performed to detect comprehensive analysis of the global host response induced by H1N1 virus infection alone, SS2 infection alone, H1N1-SS2 co-infection and PBS control.
Project description:Background: Swine influenza is a highly contagious viral infection in pigs affecting the respiratory tract that can have significant economic impacts. Streptococcus suis serotype 2 is one of the most important post-weaning bacterial pathogens in swine causing different infections, including pneumonia. Both pathogens are important contributors to the porcine respiratory disease complex. Outbreaks of swine influenza virus with a significant level of co-infections due to S. suis have lately been reported. In order to analyze a global response to the dual infection, we carried out a comprehensive gene expression profiling using a microarray approach to study the swine tracheal epithelial (NPTr) cell response to a co-infection with H1N1 swine influenza virus (swH1N1) and S. suis serotype 2. Results: Gene clustering showed that the swH1N1 and swH1N1/S. suis infections modified the expression of genes in a similar manner. Additionally, infection of NPTr cells by S. suis alone did not result in many differentially expressed genes compared to mock-infected cells. However, some important genes coding for inflammatory mediators, such as chemokines, interleukins, cell adhesion molecules and eicosanoids, were significantly upregulated in the presence of both pathogens comparing to infection with each pathogen taken individually. This synergy may also be the consequence of an increased adhesion/invasion of epithelial cells previously infected by swH1N1, as recently reported. Conclusion: In a co-infection situation, influenza virus would replicate in the respiratory epithelium inducing an inflammatory infiltrate comprised of mononuclear cells and neutrophils. Despite that these cells are unable to phagocyte and kill S. suis, they are highly activated by this pathogen. S. suis is not considered a primary pulmonary pathogen, but an exacerbated production of pro-inflammatory mediators during a co-infection with influenza virus may be of critical importance in the pathogenesis and outcome of this respiratory disease complex. Total RNA obtained from NPTr cells infected with S. suis, H1N1, or S. suis & H1N1. Four replicates in both groups.
Project description:Background: Swine influenza is a highly contagious viral infection in pigs affecting the respiratory tract that can have significant economic impacts. Streptococcus suis serotype 2 is one of the most important post-weaning bacterial pathogens in swine causing different infections, including pneumonia. Both pathogens are important contributors to the porcine respiratory disease complex. Outbreaks of swine influenza virus with a significant level of co-infections due to S. suis have lately been reported. In order to analyze a global response to the dual infection, we carried out a comprehensive gene expression profiling using a microarray approach to study the swine tracheal epithelial (NPTr) cell response to a co-infection with H1N1 swine influenza virus (swH1N1) and S. suis serotype 2. Results: Gene clustering showed that the swH1N1 and swH1N1/S. suis infections modified the expression of genes in a similar manner. Additionally, infection of NPTr cells by S. suis alone did not result in many differentially expressed genes compared to mock-infected cells. However, some important genes coding for inflammatory mediators, such as chemokines, interleukins, cell adhesion molecules and eicosanoids, were significantly upregulated in the presence of both pathogens comparing to infection with each pathogen taken individually. This synergy may also be the consequence of an increased adhesion/invasion of epithelial cells previously infected by swH1N1, as recently reported. Conclusion: In a co-infection situation, influenza virus would replicate in the respiratory epithelium inducing an inflammatory infiltrate comprised of mononuclear cells and neutrophils. Despite that these cells are unable to phagocyte and kill S. suis, they are highly activated by this pathogen. S. suis is not considered a primary pulmonary pathogen, but an exacerbated production of pro-inflammatory mediators during a co-infection with influenza virus may be of critical importance in the pathogenesis and outcome of this respiratory disease complex.
Project description:As a mild, highly contagious, respiratory disease, swine influenza always damages the innate immune systems, and increases susceptibility to secondary infections which results in considerable morbidity and mortality in pigs. Nevertheless, the systematical host response of pigs to swine influenza virus infection remains largely unknown. To explore these, a time-course gene expression profiling was performed to detect comprehensive analysis of the global host response induced by H1N1 swine influenza virus in pigs.
Project description:As a mild, highly contagious, respiratory disease, swine influenza always damages the innate immune systems, and increases susceptibility to secondary infections which results in considerable morbidity and mortality in pigs. Nevertheless, the systematical host response of pigs to swine influenza virus infection remains largely unknown. To explore these, a time-course gene expression profiling was performed to detect comprehensive analysis of the global host response induced by H1N1 swine influenza virus in pigs. At the age of day 35, 15 pigs were randomly allocated to the non-infected group and 15 to the infected group. Each piglet of the infected group was intranasaly challenged with A/swine/Hubei/101/2009(H1N1) strain and Each piglet of the non-infected group was treated similarly with an identical volume of PBS as control.
Project description:This SuperSeries is composed of the following subset Series: GSE35738: 2009 pandemic H1N1 virus causes disease and upregulation of genes related to inflammatory and immune response, cell death, and lipid metabolism in pigs GSE40088: Comparative transcriptomic analysis of acute host responses during 2009 pandemic H1N1 influenza infection in mouse, macaque, and swine (macaque dataset) GSE40091: Comparative transcriptomic analysis of acute host responses during 2009 pandemic H1N1 influenza infection in mouse, macaque, and swine (mouse dataset) Refer to individual Series