Project description:Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. DNA copy number profiles generated with a new tool, ENCODER, were compared to DNA copy number profiles from SNP6, NimbleGen and low-coverage Whole Genome Sequencing.
Project description:Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. DNA copy number profiles generated with a new tool, ENCODER, were compared to DNA copy number profiles from SNP6, NimbleGen and low-coverage Whole Genome Sequencing.
Project description:Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. DNA copy number profiles generated with a new tool, ENCODER, were compared to DNA copy number profiles from SNP6, NimbleGen and low-coverage Whole Genome Sequencing. DNA copy number profiles of mouse squamous cell lung cancer (SCLC) were generated with ENCODER from whole exome sequencing data and compared to results from the NimbleGen array
Project description:Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. DNA copy number profiles generated with a new tool, ENCODER, were compared to DNA copy number profiles from SNP6, NimbleGen and low-coverage Whole Genome Sequencing. DNA copy number profiles of melanoma PDX sample were generated with ENCODER from whole exome sequencing data and compared to results from the SNP6 platform.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:DNA copy number alterations and mutations were characterised by bulk SNP anlaysis and exome sequencing (not sown here) in three acute lymphoblastic leukaemia samples and one establish cell line REH. Further single cell experiments of these cases investigated the mutation and copy number targets previously defined exploring the sub-clonal populations and phylogenic trees within each leukaemia. Affymetrix SNP arrays were performed according to the manufacturer's directions on DNA extracted from cryopreserved diagnostic bone marrow or peripheral blood samples.
Project description:Comparison of whole genome exome array CGH to a commercial SNP array for detection of de novo and homozygous copy number variants in 99 autism simplex trios. Will update once manuscript is prepared.
Project description:Fourteen LGSOC cell lines were interrogated using whole exome sequencing, RNA sequencing, and mass spectrometry-based proteomics. Somatic mutation, copy-number aberrations, gene and protein expression were analyzed and integrated using different computational approaches. LGSOC cell line data was compared to publicly available LGSOC tumor data (AACR GENIE cohort), and also used for predictive biomarker identification of MEK inhibitor (MEKi) efficacy. Protein interaction databases were evaluated to identify novel therapeutic targets.