Project description:Although abscisic acid (ABA) and gibberellins (GAs) play pivotal roles in many physiological processes in plants, their interaction in the control of leaf growth remains elusive. In this study, genetic analyses of ABA and GA interplay in leaf growth were performed in Arabidopsis thaliana. The results indicate that for ABA and GA interaction, leaf growth of both the aba2/ga20ox1 and aba2/GA20OX1-OE plants exhibits partially additive effects but is similar to the aba2 mutant. Consistent with this result, transcriptome analysis suggests that a substantial proportion (45-65%) of the gene expression profile of aba2/ga20ox1 and aba2/GA20OX1-OE plants overlaps and shares a similar pattern to the aba2 mutant. Thus, these data support that ABA deficiency dominates leaf growth regardless of GA levels. Moreover, gene ontology (GO) analysis indicates gene enrichment in the categories of hormone response, developmental and metabolic processes, and cell wall organization in these three genotypes. Leaf developmental genes are also involved in ABA-GA interaction. Collectively, these data support that the genetic relationship of ABA and GA interaction involves multiple coordinated pathways rather than a simple linear pathway in the regulation of leaf growth. To better understand the molecular basis of ABA and GA interaction, transcriptome analysis was performed among the genotypes used in this study.
Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity.
Project description:To identify genes of the guard cell transkriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity. Ost1-2 and slac1-3 mutants were compared to their wildtype.
Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity. total samples analysed are 24: 4 biological independent replicates of: total leaf (COL-0) vs. enriched guard cells (COL-0); ABA-sprayed enriched guard cells (gl1-1) vs. control-sprayed enriched guard cells (gl1-1); low humidity (20%rh) treated enriched guard cells (COL-0) vs. high humidity (80%) treated enriched guard cells (COL-0)
Project description:To identify genes of the guard cell transkriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity. Ost1-2 and slac1-3 mutants were compared to their wildtype. total samples analysed are 35: 4 biolocigal independent replicates of: total leaf (COL-0) vs. enriched guard cells (COL-0); ABA-sprayed enriched guard cells (gl1-1) vs. control-sprayed enriched guard cells (gl1-1); enriched guard cells (slac1-3) vs. enriched guard cells (gl1-1);guard cells (ost1-2) vs. guard cells (ler);low humidity(20%rh) treated enriched guard cells (COL-0) vs. high humidity(80%) treated enriched guard cells (COL0)
Project description:Genes of the of Arabidopsis thaliana guard cells transcriptome that respond to high CO2 and darkness were identified and compared to the ABA- and low humidity treated samples of Experiment GSE41054 in Arabidopsis thaliana enriched guard cell samples.
Project description:Leaf growth is a complex developmental process that is continuously fine-tuned by the environment. Various abiotic stresses, including mild drought stress, have been shown to inhibit leaf growth in Arabidopsis thaliana (Arabidopsis), but the underlying mechanisms remain largely unknown. Here we identify the redundant Arabidopsis transcription factors ETHYLENE RESPONSE FACTOR 5 (ERF5) and ERF6 as master regulators which adapt leaf growth to environmental changes. ERF5 and ERF6 gene expression is induced very rapidly and specifically in actively growing leaves after sudden exposure to osmotic stress that mimics mild drought. Subsequently, enhanced ERF6 expression inhibits cell proliferation and leaf growth by a process involving GA and DELLA signaling. Using an ERF6 inducible overexpression line, we demonstrate that the GA-degrading enzyme GA2-OX6 is transcriptionally induced by ERF6 and that consequently DELLA proteins are stabilized. As a result, ERF6 gain-of-function lines are dwarfed and hypersensitive to osmotic stress, while growth of erf5erf6 loss-of-function mutants is less affected by stress. Next to its role in plant growth under stress, ERF6 also activates the expression of a plethora of osmotic stress-responsive genes, including the well-known stress tolerance genes STZ, MYB51 and WRKY33. Interestingly, the activation of the stress tolerance genes by ERF6 occurs independently from the ERF6-mediated growth inhibition. Together, these data fit into a leaf growth regulatory model in which ERF5 and ERF6 form a missing link between the previously observed stress-induced 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation and DELLA-mediated cell cycle exit and execute a dual role by regulating both stress tolerance and growth-inhibition.
Project description:We investigated the expression profiles and genomic organization of PP2Cs-encoding genes in Brassica oleracea. Analysis of cDNA macroarray transcription profiles for Brassica oleracea and Arabidopsis thaliana revealed significant differences in the expression of a gene encoding protein phosphatase 2C, ABI1, a member of the group A PP2C. To gain insight into the ABA signaling network conservation in a model plant and its crop relatives group A PP2C genes in B. oleracea have been identified and functionally characterized. Twenty homologous sequences were identified as putative members of the group A PP2Cs (BolC.PP2Cs). Phylogenetic analysis revealed that the B. oleracea homologues are closely related to the particular members of the A. thaliana PP2C family. The genetic analysis has corroborated the presence of 2 to 3 copies for almost all of the PP2Cs examined, which corresponded to the unique genes in the A. thaliana genome. Gene expression analyses showed that among 15 PP2Cs-encoding genes studied in B.oleracea, BolC.ABI2, BolC.HAB1, BolC.HAB2.a-c, and BolC.PP2CA.a were drought-induced. However, in contrary to AtPP2Cs, only BolC.ABI1.a-b, BolC.ABI2 and BolC.PP2CA.a were ABA-responsive at the time points tested. Our results indicate that in B. oleracea PP2C-based drought stress signaling has evolved distinctly in comparison to A. thaliana. It is hypothesized that different reactions of particular B. oleracea PP2C genes to the water stress and ABA treatment may indicate lower conservation of their specificity in stress-induced reversible phosphorylation-based protein network operating in B. oleracea and A. thaliana.