Project description:To understand plant adaptation to heat stress, gene expression profiles of Arabidopsis leaves under heat stress, during recovery and control condition were obtained using microarray. Microarray data listed responsible candidate genes for glycerolipid metabolism.
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. To identify heat stress induced genes, we performed RNA-sequencing of rosette leaves from mock-treated, heat-stressed and heat-stressed-recoved plants of both species. Analysis of genetic element transcriptional changes in response to 6 hours of 37°C heat stress and 48 hours of recovery in Arabidopsis thaliana Col-0 and Arabidopsis lyrata MN47.
Project description:To understand plant adaptation to heat stress, gene expression profiles of Arabidopsis leaves under heat stress, during recovery and control condition were obtained using microarray. Microarray data listed responsible candidate genes for glycerolipid metabolism. Arabidopsis thaliana ecotype Columbia (Col-0) seeds were surface-sterilised and sown on an agar-solidified Murashige and Skoog medium. Plants were grown at 22ºC under a 16-h-light/8-h-dark cycle. Vegetative plants were subjected to high temperature for a day, then continued to be grown under normal condition for a day.
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. To identify heat stress induced genes, we performed RNA-sequencing of rosette leaves from mock-treated, heat-stressed and heat-stressed-recoved plants of both species.
Project description:We sequenced mRNA from leaves of Arabidopsis under the control (CK), warming (W) and heat (H) treatments using the Illumina HiSeq4000 platform to generate the transcriptome dynamics that may serve as a gene expression profile blueprint for different response patterns under prolonged warming versus rapid-onset heat stress in Arabidopsis.