Project description:This is a mathematical model describing the hematopoietic lineages with leukemia lineages, as controlled by end-product negative feedback inhibition. Variables include hematopoietic stem cells, progenitor cells, terminally differentiated HSCs, leukemia stem cells, and terminally differentiated leukemia stem cells.
Project description:Genome wide DNA methylation profiling of leukemia stem, blast cells obtained from 15 AML patients and of normal hematopoietic stem/progenitor cells from 5 normal bone marrow. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450,000 CpGs in the samples. Samples included 20 leukemia stem cells, 24 blast cells and 30 normal hematopoietic stem and progenitor cells (6 different types from 5 normal bone marrows).
Project description:Expression data from human hematopoietic stem and progenitor compartments from patients with acute myeloid leukemia with normal karyotype and healthy controls
Project description:RNA-sequencing of human B cells to investigate chronic lymphocytic leukemia mutations observed in hematopoietic multipotent progenitor fractions
Project description:Transcription profiling by array of mouse FLA2 cells (high frequency of leukemia stem cells) and FLB1 cells (low frequency of leukemia stem cells)
Project description:Transcription profiling by high throughput sequencing between multipotent hematopoietic stem progenitor cells LS+K) and myeloid committed cells (LSK) of the mouse bone marrow
Project description:The comparative characterization of hematopoietic stem cells from healthy stem cell donors and patients with acute myeloid leukemia on a proteome level has the potential to reveal differentially regulated proteins which might be candidates for specific immunotherapy target molecules. Exemplarily, we analyzed the proteome of the cytosolic and the membrane fraction of CD34 and CD123 co-expressing FACS-sorted leukemic progenitors from five patients with acute myeloid leukemia employing mass spectrometry. As a reference, CD34+CD123+ normal hematopoietic progenitor cells from five healthy stem cell donors were analyzed. In this TMT 10-plex labeling based approach 2068 proteins were identified with 256 proteins differentially regulated in one or both cellular compartments. This study demonstrates the feasibility of a mass spectrometry based proteomic approach to detect differentially expressed proteins in two compartment fractions of leukemic stem cells as compared to their healthy stem cell counterparts.