Project description:Hepatitis B virus (HBV) infection could cause hepatitis, liver cirrhosis and hepatocellular carcinoma. HBV-mediated pathogenesis is only partially understood, but X protein (HBx) reportedly possesses oncogenic potential. Exosomes are small membrane vesicles with diverse functions released by various cells including hepatocytes, and HBV harnesses cellular exosome biogenesis and export machineries for virion morphogenesis and secretion. Therefore, HBV infection might cause changes in exosome contents with functional implications for both virus and host. In this project, exosome protein content changes induced by HBV and HBx were quantitatively analyzed by SILAC/LC-MS/MS. Exosomes prepared from SILAC-labeled hepatoma cell line Huh-7 transfected with HBx, wildtype or HBx-null HBV replicon plasmids were analyzed by LC-MS/MS.
Project description:Hepatitis B virus (HBV) infection could cause hepatitis, liver cirrhosis and hepatocellular carcinoma. HBV-mediated pathogenesis is only partially understood, but X protein (HBx) reportedly possesses oncogenic potential. Exosomes are small membrane vesicles with diverse functions released by various cells including hepatocytes, and HBV harnesses cellular exosome biogenesis and export machineries for virion morphogenesis and secretion. Therefore, HBV infection might cause changes in exosome contents with functional implications for both virus and host. In this project, exosome protein content changes induced by HBV and HBx were quantitatively analyzed by SILAC/LC-MS/MS. Exosomes prepared from SILAC-labeled hepatoma cell line Huh-7 transfected with HBx, wildtype or HBx-null HBV replicon plasmids were analyzed by LC-MS/MS.
Project description:Analysis of human liver cell line (Huh7) infected with HEV ORF3 expressing (Ad-orf3-egfp) and control recombinant adenovirus (Ad-egfp). Hepatitis E virus ORF3 protein (pORF3) is known to modulate the host cell. Results provide insight into the role of this protein for HEV infection and pathogenesis. The gene expression experiment of Huh7 hepatoma cell line infected with ORF3 expressing recombinant adenoviruses (Ad-orf3-egfp) and with control recombinant adenoviruses (Ad-egfp) was performed in replicates of three.
Project description:The co-infection of hepatitis B (HBV) patients with the hepatitis D virus (HDV) causes the most severe form of viral hepatitis and thus drastically worsens the course of the disease. Therapy options for HBV/HDV patients are still limited. Here, we investigated the potential of natural killer (NK) cells that are crucial drivers of the innate immune response against viruses to target HDV-infected hepatocytes. We established in vitro co-culture models using HDV-infected hepatoma cell lines and human peripheral blood NK cells. We determined NK cell activation by flow cytometry, transcriptome analysis, bead-based cytokine immunoassays, and NK cell-mediated effects on T cells by flow cytometry. We validated the mechanisms using CRISPR/Cas9-mediated gene deletions. Moreover, we assessed the frequencies and phenotype of NK cells in peripheral blood of HBV and HDV superinfected patients. Upon co-culture with HDV-infected hepatic cell lines, NK cells upregulated activation markers, interferon-stimulated genes (ISGs) including the death receptor ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), produced interferon (IFN)-gamma and eliminated HDV-infected cells via the TRAIL-TRAIL-R2 axis. We identified IFN-beta released by HDV-infected cells as an important enhancer of NK cell activity. In line with our in vitro data, we observed activation of peripheral blood NK cells from HBV/HDV co-infected, but not HBV mono-infected patients. Our data demonstrate NK cell activation in HDV infection and their potential to eliminate HDV-infected hepatoma cells via the TRAIL/TRAIL-R2 axis which implies a high relevance of NK cells for the design of novel anti-viral therapies.