Project description:The Hypoxia-Inducible Factors induce the expression of the histone demethylases JMJD1A (KDM3A) and JMJD2B (KDM4B), linking the hypoxic tumor microenvironment to epigenetic mechanisms that may foster tumor progression. Using transcript profiling, we have identified genes that are regulated by JMJD1A and JMJD2B in both normoxic and hypoxic conditions in SKOV3ip.1 ovarian cancer cells. This dataset includes expression data obtained from exposing ovarian cancer cells to hypoxia in combination with siRNA-mediated knockdown of the hypoxia-inducible histone demethylases JMJD1A and JMJD2B. These data were used to both identify functional overlap between each histone demethylase, as well as identify effectors of tumor growth mediated by JMJD2B (KDM4B) in normoxia and hypoxia.
Project description:The Hypoxia-Inducible Factors induce the expression of the histone demethylases JMJD1A (KDM3A) and JMJD2B (KDM4B), linking the hypoxic tumor microenvironment to epigenetic mechanisms that may foster tumor progression. Using transcript profiling, we have identified genes that are regulated in RCC4 with siRNA-mediated knockdown of JMJD1A and JMJD2B. This dataset includes expression data obtained from renal cell Carcinoma being loss or mutation of the von Hippel-Lindau (VHL) tumor suppressor gene combination with siRNA-mediated knockdown of histone demethylases JMJD1A and JMJD2B.
Project description:The Hypoxia-Inducible Factors induce the expression of the histone demethylases JMJD1A (KDM3A) and JMJD2B (KDM4B), linking the hypoxic tumor microenvironment to epigenetic mechanisms that may foster tumor progression. This dataset includes expression data obtained from exposing colon carcinoma cells to hypoxia in combination with siRNA-mediated knockdown of the hypoxia-inducible histone demethylases JMJD1A and JMJD2B.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.