Project description:Central nervous system primitive neuroectodermal tumors (CNS PNET) and medulloblastomas are both embryonal tumors that predominantly occur in children. We used microarrays to analyse a cohort of CNS PNETs and medulloblastomas to identify gene expression related to tumor subgroups. RNA extracted from 23 frozen tumor samples, plus a commercial fetal brain sample, was analysed using Affymetrix U133 plus 2.0 arrays. Tumour subgroups, based on gene expression, were identified using clustering methods.
Project description:Raw mass spectrometry data from cerebrospinal fluid (CSF) proteomics analysis of central nervous system lymphoma (CNSL) patients undergoing multi-agent intraventricular chemotherapy (MAIVC). The study aimed to identify CSF-based proteomic biomarkers for treatment response and outcome prediction in CNSL, analyzing 117 CSF samples from 59 patients.
Project description:Embryonal tumours of the central nervous system (CNS) represent a heterogeneous group of tumours about which little is known biologically, and whose diagnosis, on the basis of morphologic appearance alone, is controversial. Medulloblastomas, for example, are the most common malignant brain tumour of childhood, but their pathogenesis is unknown, their relationship to other embryonal CNS tumours is debated, and patients' response to therapy is difficult to predict. We approached these problems by developing a classification system based on DNA microarray gene expression data derived from 99 patient samples. Here we demonstrate that medulloblastomas are molecularly distinct from other brain tumours including primitive neuroectodermal tumours (PNETs), atypical teratoid/rhabdoid tumours (AT/RTs) and malignant gliomas. Previously unrecognized evidence supporting the derivation of medulloblastomas from cerebellar granule cells through activation of the Sonic Hedgehog (SHH) pathway was also revealed. We show further that the clinical outcome of children with medulloblastomas is highly predictable on the basis of the gene expression profiles of their tumours at diagnosis.
Project description:Embryonal tumours of the central nervous system (CNS) represent a heterogeneous group of tumours about which little is known biologically, and whose diagnosis, on the basis of morphologic appearance alone, is controversial. Medulloblastomas, for example, are the most common malignant brain tumour of childhood, but their pathogenesis is unknown, their relationship to other embryonal CNS tumours is debated, and patients' response to therapy is difficult to predict. We approached these problems by developing a classification system based on DNA microarray gene expression data derived from 99 patient samples. Here we demonstrate that medulloblastomas are molecularly distinct from other brain tumours including primitive neuroectodermal tumours (PNETs), atypical teratoid/rhabdoid tumours (AT/RTs) and malignant gliomas. Previously unrecognized evidence supporting the derivation of medulloblastomas from cerebellar granule cells through activation of the Sonic Hedgehog (SHH) pathway was also revealed. We show further that the clinical outcome of children with medulloblastomas is highly predictable on the basis of the gene expression profiles of their tumours at diagnosis. golub-00460 Assay Type: Gene Expression Provider: Affymetrix Array Designs: Hu6800 Organism: Homo sapiens (ncbitax) Material Types: synthetic_RNA, organism_part, whole_organism, total_RNA Disease States: synthetic_RNA, organism_part, whole_orMedulloblastoma, renal rhabdoid tumor, Atypical Teratoid/Rhabdoid Tumor, Supratentorial PNET, Supratentorial PNET (pineoblastoma), Normal, Malignant Glioma, Extrarenal Rhabdoid Tumorganism, total_RNA
Project description:Molecular characteristics of pediatric brain tumors have not only allowed for tumor subgrouping but have introduced novel treatment options for patients with specific tumor alterations. Therefore, an accurate histologic and molecular diagnosis is critical for optimized management of all pediatric patients with brain tumors, including central nervous system embryonal tumors. We present a case where optical genome mapping identified a ZNF532-NUTM1 fusion in a patient with a unique tumor best characterized histologically as a central nervous system embryonal tumor with rhabdoid features. Additional analyses including immunohistochemistry for NUT protein, methylation array, whole genome, and RNA-sequencing was done to confirm the presence of the fusion in the tumor. This is the first description of a pediatric patient with a ZNF532-NUTM1 fusion, yet the histology of this tumor is similar to that of adult cancers with ZNF-NUTM1 fusions and other NUTM1-fusion positive brain tumors reported in literature. Although rare, the distinct pathology and underlying molecular characteristics of these tumors separate them from other embryonal tumors. Therefore, the NUTM-rearrangement appears to define a novel subgroup of pediatric central nervous system embryonal tumors with rhabdoid/epithelioid features that may have a unique response to treatment. Screening for a NUTM1-rearrangement should be considered for all patients with unclassified central nervous system tumors with rhabdoid features to ensure accurate diagnosis so this can ultimately inform therapeutic management for these patients.
Project description:Molecular characteristics of pediatric brain tumors have not only allowed for tumor subgrouping but have introduced novel treatment options for patients with specific tumor alterations. Therefore, an accurate histologic and molecular diagnosis is critical for optimized management of all pediatric patients with brain tumors, including central nervous system embryonal tumors. We present a case where optical genome mapping identified a ZNF532-NUTM1 fusion in a patient with a unique tumor best characterized histologically as a central nervous system embryonal tumor with rhabdoid features. Additional analyses including immunohistochemistry for NUT protein, methylation array, whole genome, and RNA-sequencing was done to confirm the presence of the fusion in the tumor. This is the first description of a pediatric patient with a ZNF532-NUTM1 fusion, yet the histology of this tumor is similar to that of adult cancers with ZNF-NUTM1 fusions and other NUTM1-fusion positive brain tumors reported in literature. Although rare, the distinct pathology and underlying molecular characteristics of these tumors separate them from other embryonal tumors. Therefore, the NUTM-rearrangement appears to define a novel subgroup of pediatric central nervous system embryonal tumors with rhabdoid/epithelioid features that may have a unique response to treatment. Screening for a NUTM1-rearrangement should be considered for all patients with unclassified central nervous system tumors with rhabdoid features to ensure accurate diagnosis so this can ultimately inform therapeutic management for these patients.