Project description:Environmental isolates of Vibrio cholerae from California coastal water compared to reference strain N16961. A genotyping experiment design type classifies an individual or group of individuals on the basis of alleles, haplotypes, SNP's. Keywords: genotyping_design; array CGH
Project description:Vibrio vulnificus causes severe necrotizing wound infections and life-threatening foodborne infections. While clinical isolates of V. vulnificus are well-established as human pathogens, the pathogenic mechanisms underlying the virulence of food-derived isolates, particularly in the case of wound infections, remain poorly understood. This study aimed to elucidate the pathogenic mechanisms of a highly virulent, seafood-derived V. vulnificus isolate. A molecular survey of 28 V. vulnificus isolates from Shenzhen identified four MARTX toxin types, with the D-type predominating (36%). We characterized a representative shrimp-derived isolate, Vv3, which carries a chromosomal D-type MARTX with an ACD-MCF-ABH-MCF effector architecture. Using a newly established mouse wound infection model, Vv3 induced 100% mortality within 12 hours, with high bacterial loads detected systemically. Pathological analysis revealed severe tissue damage at the infection site, marked by muscle necrosis, and significant distal organ damage. Strikingly, flow cytometry analysis of splenocytes showed a significant depletion of macrophages and lymphocytes, rather than a classic cytokine storm, which was supported by transcriptomic data. To dissect the molecular drivers underlying the pathogenicity of food-derived V. vulnificus, we generated isogenic toxin mutants. In vitro assays demonstrated that the MARTX toxin was the primary mediator of rapid cell death in both macrophages and epithelial cells. Deletion of the GD-rich repeat domain in the MARTX toxin (ΔrtxA-GD) significantly reduced cytotoxicity and allowed cells to maintain their morphology, while deletion of hemolysin (ΔvvhA) had a minor effect. Critically, In vivo mice wound infections indicated that MARTX-deficient mutants with or without deletion of vvhA is unable to cause mortality in mice. These results establish that the D-type MARTX toxin is the dominant virulence determinant in this foodborne isolate, driving mortality through a direct destruction of host cells. This study highlights the severe risk posed by foodborne V. vulnificus in wound exposures and informs that the GD-rich region serves as a potential target for intervention against V. vulnificus infection.
Project description:Vibrio parahaemolyticus an emerging pathogen that is a causative agent of foodborne gastroenteritis when raw or undercooked seafood is consumed. Previous microarray data using a Vibrio parahaemolyticus RIMD2210633 chip has shown the master quorum-sensing regulator OpaR controls virulence, type III and type VI secretion systems, and flagellar and capsule production genes. In a parallel study, RNA-Seq was used to comparatively study the transcriptome changes of wild type Vibrio parahaemolyticus BB22 and a ΔopaR strain directly. Differences in mRNA expression were analyzed using next generation Illumina sequencing and bioinformatics techniques to align and count reads. A comparison with the previous microarray data showed good correlation between the shared genes. The RNA-Seq offered an insight into control of genes specific to the Vibrio parahaemolyticus BB22 strain as well as a new look at the sRNAs that are expressed. Eleven transcriptional regulators with greater than 4 fold regulation in the previous microarray study and 2 fold regulation in the RNA-Seq analysis, were chosen to validate the data using qRT-PCR and further characterized with electrophoretic mobility shift assays (EMSAs) to determine if they are direct targets of OpaR. The transcription factors chosen play key roles in virulence, surface motility, cell to cell interactions, and cell surface characteristics. One small RNA was identified in the RNA-Seq data to be quorum-sensing controlled and unidentified by other programs. The RNA-Seq data has aided in understanding and elucidating the hierarchy of quorum-sensing control of OpaR in Vibrio parahaemolyticus. The wild type Vibrio parahaemolyticus BB22 strain LM5312 and an opaR deletion strain LM5674 were analyzed for mRNA expression using RNA-Seq.
Project description:Vibrio parahaemolyticus an emerging pathogen that is a causative agent of foodborne gastroenteritis when raw or undercooked seafood is consumed. Previous microarray data using a Vibrio parahaemolyticus RIMD2210633 chip has shown the master quorum-sensing regulator OpaR controls virulence, type III and type VI secretion systems, and flagellar and capsule production genes. In a parallel study, RNA-Seq was used to comparatively study the transcriptome changes of wild type Vibrio parahaemolyticus BB22 and a ΔopaR strain directly. Differences in mRNA expression were analyzed using next generation Illumina sequencing and bioinformatics techniques to align and count reads. A comparison with the previous microarray data showed good correlation between the shared genes. The RNA-Seq offered an insight into control of genes specific to the Vibrio parahaemolyticus BB22 strain as well as a new look at the sRNAs that are expressed. Eleven transcriptional regulators with greater than 4 fold regulation in the previous microarray study and 2 fold regulation in the RNA-Seq analysis, were chosen to validate the data using qRT-PCR and further characterized with electrophoretic mobility shift assays (EMSAs) to determine if they are direct targets of OpaR. The transcription factors chosen play key roles in virulence, surface motility, cell to cell interactions, and cell surface characteristics. One small RNA was identified in the RNA-Seq data to be quorum-sensing controlled and unidentified by other programs. The RNA-Seq data has aided in understanding and elucidating the hierarchy of quorum-sensing control of OpaR in Vibrio parahaemolyticus.
Project description:Type VI secretion systems (T6SS) are widely distributed among Vibrio species, yet their roles in the coexistence of toxigenic and non- toxigenic strains remain unclear. Here, we report a novel orphan T6SS effector-immunity module, TseVs-TsiVs, primarily harbored by non- toxigenic Vibrio cholerae. TseVs exhibits robust vibriocidal activity, specifically targeting susceptible Vibrios (lacking TsiVs). TseVs forms dual-membrane, ion-selective pores that collapse Na⁺/K⁺ homeostasis, resulting in membrane depolarization and ATP depletion. Remarkably, non-Vibrio bacteria evade TseVs through proton motive force (PMF)-dependent resilience, uncovering a previously unrecognized immunity-independent defense strategy. Furthermore, tseVs+ non- toxigenic V. cholerae strains are globally distributed and have dominated in recent decades, highlighting TseVs’s ecological significance in Vibrio population dynamics. By linking TseVs’s bioenergetic assassination to Vibrio population shifts, we demonstrate how T6SS effectors shape microbial genetic diversity. Our findings suggest that TseVs represents a promising model for precision antimicrobial strategies, minimizing collateral damage to commensal microbiota.