Project description:In the malaria parasite Plasmodium falciparum, the expression of many genes is regulated by heterochromatin (HC) based on the histone mark tri-methylation of histone H3 lysine 9 (H3K9me3). HC assembly involves three distinct steps: de novo nucleation, spreading and maintenance. Nucleation, which consists in formation of HC in a previously euchromatic region, determines at which specific regions of the genome HC occurs, but this process is not well understood in malaria parasites. Here we investigated the DNA sequence cis determinants of HC nucleation in P. falciparum, using a screening approach based on integration of fragments from different heterochromatic genes into an euchromatic locus, followed by chromatin immunoprecipitation (ChIP). We found that fragments of var gene upstream regions nucleated HC efficiently, whereas fragments from the pfap2-g upstream region or from the mspdbl2 locus did not nucleate HC. Fragments from the beginning of the coding sequence (CDS) of pfap2-g nucleated HC with low efficiency, as evidenced by nucleation requiring long fragments of ~2 kb and occurring only in a fraction of the parasites. These results demonstrate that the primary DNA sequence is a main determinant of HC nucleation in P. falciparum. We also studied HC maintenance at the pfap2-g locus, which demonstrated that specific parts of the upstream region, different from the regions competent for HC nucleation, are required for maintenance. Together, our results provide initial insight into how HC is directed to specific loci and maintained in P. falciparum.
Project description:Transcriptomic Analysis of Cultured Sporozoites of P. falciparum RNA-seq reads from each of three developmental stages (2 replicates per sample) were mapped to the reference Plasmodium falciparum genome, and gene expression levels were calculated for each sample.