Project description:The acetylation levels of histones and other proteins change during aging and have been linked to neurodegeneration. Here we show that deletion of the histone acetyltransferase (HAT) co-factor Trrap specifically impairs the function of the transcription factor Sp1, reduces its stability and causes a decrease in histone acetylation at Sp1 target genes. Modulation of Sp1 function by Trrap acts as a hub regulating multiple processes involved in neuron and neural stem cells function and maintenance including microtubule dynamics and the Wnt signaling pathway. Consistently, Trrap conditional mutants exhibit all hallmarks of neurodegeneration including dendrite retraction and axonal swellings, neuron death, astrogliosis, microglia activation, demyelination and decreased adult neurogenesis. Our results uncovered a novel functional network, essential to prevent neurodegeneration, and involving the specific regulation of Sp1 transcription factor and its downstream targets by Trrap-HAT.
Project description:The acetylation levels of histones and other proteins change during aging and have been linked to neurodegeneration. Here we show that deletion of the histone acetyltransferase (HAT) co-factor Trrap specifically impairs the function of the transcription factor Sp1, reduces its stability and causes a decrease in histone acetylation at Sp1 target genes. Modulation of Sp1 function by Trrap acts as a hub regulating multiple processes involved in neuron and neural stem cells function and maintenance including microtubule dynamics and the Wnt signaling pathway. Consistently, Trrap conditional mutants exhibit all hallmarks of neurodegeneration including dendrite retraction and axonal swellings, neuron death, astrogliosis, microglia activation, demyelination and decreased adult neurogenesis. Our results uncovered a novel functional network, essential to prevent neurodegeneration, and involving the specific regulation of Sp1 transcription factor and its downstream targets by Trrap-HAT.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:The aim of this study was to assess whether chronic treatment with RPV can modulate the progression of chronic liver disease, especially of non-alcoholic fatty liver disease (NAFLD), through a nutritional model in wild-type mice Mice were daily treated with RPV (p.o.) and fed with normal or high fat diet during 3 months to induce fatty liver disease