Project description:BackgroundThe pangolin is a Pholidota mammal with large keratin scales protecting its skin. Two pangolin species ( Manis pentadactyla and Manis javanica ) have been recorded as critically endangered on the International Union for Conservation of Nature Red List of Threatened Species. Optical mapping constructs high-resolution restriction maps from single DNA molecules for genome analysis at the megabase scale and to assist genome assembly. Here, we constructed restriction maps of M. pentadactyla and M. javanica using optical mapping to assist with genome assembly and analysis of these species.FindingsGenomic DNA was nicked with Nt.BspQI and then labeled using fluorescently labeled bases that were detected by the Irys optical mapping system. In total, 3,313,734 DNA molecules (517.847 Gb) for M. pentadactyla and 3,439,885 DNA molecules (504.743 Gb) for M. javanica were obtained, which corresponded to approximately 178X and 177X genome coverage, respectively. Qualified molecules (≥150 kb with a label density of >6 sites per 100 kb) were analyzed using the de novo assembly program embedded in the IrysView pipeline. We obtained two maps that were 2.91 Gb and 2.85 Gb in size with N50s of 1.88 Mb and 1.97 Mb, respectively.ConclusionsOptical mapping reveals large-scale structural information that is especially important for non-model genomes that lack a good reference. The approach has the potential to guide de novo assembly of genomes sequenced using next-generation sequencing. Our data provide a resource for Manidae genome analysis and references for de novo assembly. This note also provides new insights into Manidae evolutionary analysis at the genome structure level.
Project description:The Chinese pangolin is an endangered species, and ex situ conservation and captive rescue are important conservation measures. This requires reliable information on nutritional energy requirements and expenditure characteristics. However, we lack sufficient knowledge of their energy physiology to determine their energy requirements for maintenance and growth. An open-flow respirometry system was used to measure the resting metabolic rate (RMR) and the daily energy expenditure (DEE) of Chinese pangolins (Manis pentadactyla), and the dietary digestive energy was measured. The average RMR in Chinese pangolins was 3.23 ml O2 kg-1 min-1 at an ambient temperature (Ta) of 24.5-30°C, which was only 73.0% of the expected value based on body mass (BM). The average DEE values were 744.9 kJ day-1 in animals with BM >3 kg and 597.3 kJ day-1 in those with BM <3 kg, which were only 52.4% and 60.6% of the predicted values, respectively. The RMR and DEE levels of the Chinese pangolin were lower than those of similar-sized eutherian mammals and close to those of anteaters. These characteristics suggest that the Chinese pangolin has a low demand for energy in its diet. Although metabolic level data alone cannot be used to calculate the energy requirements of each Chinese pangolin, we believe they can provide a tangible reference for the relocation of Chinese pangolins. These results provide a scientific basis for future research on the physiology and ecology of endangered wildlife such as the Chinese pangolin.