Project description:Using transcriptomic we looked for changes in large-scale gene expression profiling of leukocytes of hypertensive patients with left ventricular remodeling compared to hypertensive patients without left ventricular remodeling and to control and whether these changes reflect metabolic pathway regulation already shown by positron emission tomography. Genes encoding for glycolytic enzymes were found over-expressed in the group of hypertensive patients with left ventricular remodeling. Expression of master genes involved in fatty acids β-oxidation was unchanged.
Project description:Elevated levels of an endogenous Na/K‐ATPase inhibitor marinobufagenin accompany salt‐sensitive hypertension and are implicated in cardiac fibrosis. Immunoneutralization of marinobufagenin reduces blood pressure in Dahl salt‐sensitive (Dahl‐S) rats. The effect of the anti‐marinobufagenin monoclonal antibody on blood pressure, left ventricular (LV) and renal remodeling, and LV gene expression were investigated in hypertensive Dahl‐S rats.
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion.
Project description:Full Title: Transition from Compensated Hypertrophy to Systolic Heart Failure in the Spontaneously Hypertensive Rat: Structure, Function, and Transcript Analysis Gene expression changes and left ventricular remodeling associated with the transition to systolic heart failure (HF) were determined in the spontaneously hypertensive rat (SHR). By combining transcriptomics of left ventricles from six SHR with HF with changes in function and structure we aimed to better understand the molecular events underlying the onset of systolic HF compared to six age-matched, SHR with compensated hypertrophy. Left ventricle (LV) ejection fraction was depressed (82±4 to 52±3 %) in compensated vs. failing animals. Systolic blood pressure decreased and LV end-diastolic and systolic volume increased with HF. Failing SHR hearts also demonstrated increases in left and right ventricular mass relative to non-failing SHRs. LV papillary muscle force development and shortening velocity decreased, β-adrenergic responsiveness was depressed, myocardial stiffness and myocardial fibrosis increased with HF relative to non-failing animals. Initial micro-array analysis revealed that 1,431 transcripts were differentially expressed with HF compared to non-failing SHR (p<0.05). Of the identified transcripts, lipopolysaccharide binding protein, the most highly expressed transcript with HF, was negatively correlated to myocardial force while elevated expression of the collagen cross-linking enzyme lysyl oxidase correlated positively with muscle stiffness. Besides these individual transcripts, gene set enrichment analysis (GSEA) identified multiple enriched pathways with HF, most prominent of the altered signaling pathways involved TGF-β and insulin signaling. GESA analysis additionally identified altered gene sets involving inflammation, oxidative stress, cell degradation and cell death, among others (all p<0.01). In contrast to diastolic HF where few transcripts are reported to be altered, our data indicate multiple genes and pathways involved in a variety of biological processes characterize the onset of systolic HF, consistent with many functional and structural changes present in the failing hypertensive heart.
Project description:Full Title: Transition from Compensated Hypertrophy to Systolic Heart Failure in the Spontaneously Hypertensive Rat: Structure, Function, and Transcript Analysis Gene expression changes and left ventricular remodeling associated with the transition to systolic heart failure (HF) were determined in the spontaneously hypertensive rat (SHR). By combining transcriptomics of left ventricles from six SHR with HF with changes in function and structure we aimed to better understand the molecular events underlying the onset of systolic HF compared to six age-matched, SHR with compensated hypertrophy. Left ventricle (LV) ejection fraction was depressed (82±4 to 52±3 %) in compensated vs. failing animals. Systolic blood pressure decreased and LV end-diastolic and systolic volume increased with HF. Failing SHR hearts also demonstrated increases in left and right ventricular mass relative to non-failing SHRs.  LV papillary muscle force development and shortening velocity decreased, β-adrenergic responsiveness was depressed, myocardial stiffness and myocardial fibrosis increased with HF relative to non-failing animals. Initial micro-array analysis revealed that 1,431 transcripts were differentially expressed with HF compared to non-failing SHR (p<0.05). Of the identified transcripts, lipopolysaccharide binding protein, the most highly expressed transcript with HF, was negatively correlated to myocardial force while elevated expression of the collagen cross-linking enzyme lysyl oxidase correlated positively with muscle stiffness. Besides these individual transcripts, gene set enrichment analysis (GSEA) identified multiple enriched pathways with HF, most prominent of the altered signaling pathways involved TGF-β and insulin signaling. GESA analysis additionally identified altered gene sets involving inflammation, oxidative stress, cell degradation and cell death, among others (all p<0.01). In contrast to diastolic HF where few transcripts are reported to be altered, our data indicate multiple genes and pathways involved in a variety of biological processes characterize the onset of systolic HF, consistent with many functional and structural changes present in the failing hypertensive heart. Comprehensive gene expression profiling of heart failure Rat model vs control.
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion. Global gene expression profile of normal dermal lymphatic endothelial cells (ndLECs) compared to dermal lymphatic endothelial cells derived from type 2 diabetic patients (dLECs).Quadruplicate biological samples were analyzed from human lymphatic endothelial cells (4 x diabetic; 4 x non-diabetic). subsets: 1 disease state set (dLECs), 1 control set (ndLECs)