Project description:Streptomyces sp. M7 has demonstrated ability to remove lindane from culture media and soils. In this study, we used MS-based label-free quantitative proteomic to understand lindane degradation and its metabolic context in Streptomyces sp. M7. We identified the proteins involved in the up-stream degradation pathway. Our results demonstrated that mineralization of lindane is feasible since proteins from an unusual down-stream degradation pathway were also identified. Degradative steps were supported by an active catabolism that supplied energy and reducing equivalents in the form of NADPH. This is the first study in which degradation steps of an organochlorine compound and metabolic context are elucidate in a biotechnological genus as Streptomyces. These results serve as basement to study other degradative actinobacteria and to improve the degradation processes of Streptomyces sp. M7.
Project description:The goal was to study the dfactionation of different lignocelullose (glucose, wheat bran, wheat straw) by Streptomyces coelicolor A3(2) and the corresponding production of secondary metabolites. This was performed by multi-omic experiment such as transcriptomic/metabolomic and leads to the production of new metabolites. For that, the strain Streptomyces coelicolor A3(2) was subjected to two carbon sources in triplicate (wheat bran and glucose as control). Enzymatic activities were studied at different times and the expression of CAZYmes was studied by transcriptomic in order to detect which enzymes are needed for each carbon source