Project description:Analysis of Pseudomonas aeruginosa PA01 (ATCC 15692) Psl polysaccharide deficient mutant. Psl polysaccharide deficient mutant is evaluated with microarray to understand the genes affected by this polysaccharide. Our results provide new vision on the roles played by Psl polysaccharide in P. aeruginosa. Exopolysaccharide Psl is a critical biofilm matrix component in Pseudomonas aeruginosa, which forms a fiber-like matrix to enmesh bacteria communities. Iron has been shown to serve as a signal in P. aeruginosa biofilm development, yet how iron controls biofilm formation is not clear. Here we perform a transcriptomic analysis to compare Psl negative strain versus its isogenic wild-type strain PAO1. The results indicate that the expression of genes involved in iron homeostasis and oxidative stress response increased drastically at transcriptional level in Psl negative strain, suggesting Psl deficiency induces iron limitation. Subsequent studies confirm that Psl can efficiently bind iron in vitro and Psl fibers functions as an iron storage channel in P. aeruginosa biofilms. We used two wild type (WT) replicates and two mutant (MT) replicates to compare the differential gene expression.
Project description:Analysis of Pseudomonas aeruginosa PA01 (ATCC 15692) Psl polysaccharide deficient mutant. Psl polysaccharide deficient mutant is evaluated with microarray to understand the genes affected by this polysaccharide. Our results provide new vision on the roles played by Psl polysaccharide in P. aeruginosa. Exopolysaccharide Psl is a critical biofilm matrix component in Pseudomonas aeruginosa, which forms a fiber-like matrix to enmesh bacteria communities. Iron has been shown to serve as a signal in P. aeruginosa biofilm development, yet how iron controls biofilm formation is not clear. Here we perform a transcriptomic analysis to compare Psl negative strain versus its isogenic wild-type strain PAO1. The results indicate that the expression of genes involved in iron homeostasis and oxidative stress response increased drastically at transcriptional level in Psl negative strain, suggesting Psl deficiency induces iron limitation. Subsequent studies confirm that Psl can efficiently bind iron in vitro and Psl fibers functions as an iron storage channel in P. aeruginosa biofilms.
Project description:Pseudomonas aeruginosa PAO1 is the most commonly used strain for research on this ubiquitous and metabolically versatile opportunistic pathogen. Strain PAO1, a derivative of the original Australian PAO isolate, has been distributed worldwide to laboratories and strain collections. Over decades discordant phenotypes of PAO1 sublines have emerged. Taking the existing PAO1-UW genome sequence (named after the University of Washington, which led the sequencing project) as a blueprint, the genome sequences of reference strains MPAO1 and PAO1-DSM (stored at the German Collection for Microorganisms and Cell Cultures [DSMZ]) were resolved by physical mapping and deep short read sequencing-by-synthesis. MPAO1 has been the source of near-saturation libraries of transposon insertion mutants, and PAO1-DSM is identical in its SpeI-DpnI restriction map with the original isolate. The major genomic differences of MPAO1 and PAO1-DSM in comparison to PAO1-UW are the lack of a large inversion, a duplication of a mobile 12-kb prophage region carrying a distinct integrase and protein phosphatases or kinases, deletions of 3 to 1,006 bp in size, and at least 39 single-nucleotide substitutions, 17 of which affect protein sequences. The PAO1 sublines differed in their ability to cope with nutrient limitation and their virulence in an acute murine airway infection model. Subline PAO1-DSM outnumbered the two other sublines in late stationary growth phase. In conclusion, P. aeruginosa PAO1 shows an ongoing microevolution of genotype and phenotype that jeopardizes the reproducibility of research. High-throughput genome resequencing will resolve more cases and could become a proper quality control for strain collections.
Project description:The P. aeruginosa reference strain PAO1 has been used to delineate much of the physiology, metabolism, and fundamental biology of the species. The wild-type parent of PAO1 was lost, and PAO1 carries a regulatory mutation introduced for positive genetic selection that affects antibiotic resistance, virulence, quorum sensing, and other traits. The mutation is a loss-of-function change in an oxidoreductase gene (mexS), which constitutively activates a stress response controlled by a positive regulator (MexT). Fitness defects associated with the constitutive response have led to the inadvertent selection of mexT-minus suppressor mutations, creating genetic heterogeneity in PAO1 sublines studied in different laboratories. To help circumvent complications due to the mexS-minus phenotypes, we created a wild-type version of PAO1 (called LPAO) by "reverting" its mexS to the functional allele likely to have been in its parent. Phenotypic analysis revealed that the mexS-minus allele in PAO1 makes growth sensitive to salt (NaCl) and is lethal when combined with mutations inactivating the major sodium antiporter (ShaABCDEF). The salt sensitivity of PAO1 may underlie some complex mexS-minus phenotypes and help explain the selection of mexT-minus suppressor mutations. To facilitate genetic comparisons of PAO1, LPAO, and other P. aeruginosa strains, we developed a transformation procedure to transfer selectable alleles, such as transposon insertion alleles, between strains. Overall, the study helps explain phenotypic heterogeneity of PAO1-derived strains and provides resources to help recognize and eliminate difficulties due to it. IMPORTANCE The P. aeruginosa reference strain PAO1 carries a regulatory mutation that may affect processes characterized in it. To eliminate complications due to the mutation, we constructed a version of the missing wild-type parent strain and developed methods to transfer mutations between PAO1 and the new strain. The methods are likely to be applicable to other isolates of P. aeruginosa as well.
Project description:Type IV pili (T4Ps) are abundant in many bacterial and archaeal species, where they play important roles in both surface sensing and twitching motility, with implications for adhesion, biofilm formation and pathogenicity. While Type IV pilus (T4P) structures from other organisms have been previously solved, a high-resolution structure of the native, fully assembled T4P of Pseudomonas aeruginosa, a major human pathogen, would be valuable in a drug discovery context. Here, we report a 3.2 Å-resolution structure of the P. aeruginosa PAO1 T4P determined by electron cryomicroscopy (cryo-EM). PilA subunits constituting the T4P exhibit a classical pilin fold featuring an extended N-terminal α-helix linked to a C-terminal globular β-sheet-containing domain, which are packed tightly along the pilus, in line with models derived from previous cryo-EM data of the P. aeruginosa PAK strain. The N-terminal helices constitute the pilus core where they stabilise the tubular assembly via hydrophobic interactions. The α-helical core of the pilus is surrounded by the C-terminal globular domain of PilA that coats the outer surface of the pilus, mediating interactions with the surrounding environment. Comparison of the P. aeruginosa PAO1 T4P with T4P structures from other organisms, both at the level of the pilin subunits and the fully assembled pili, confirms previously described common architectural principles whilst highlighting key differences between members of this abundant class of prokaryotic filaments. This study provides a structural framework for understanding the molecular and cell biology of these important cellular appendages mediating interaction of prokaryotes to surfaces.
Project description:Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-α. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-κB pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed.