Project description:Experiment: Establishment of expression profiles in grade I and grade II meningiomas and in normal control brain samples. We extracted DNA from specimens and performed mutational analysis in meningiomas and extracted RNA that was processed and hybridized to Affymetrix microarrays.
Project description:Meningiomas are common brain tumors that are classified into three World Health Organization grades (Grade I: benign, Grade II: atypical and Grade III: malignant) and are molecularly ill-defined tumors. The purpose of this study was identify microRNA (miRNA) molecular signatures unique to the different grades of meningiomas correlating them to prognosis. We have used a miRNA expression microarray to show that meningiomas of all three grades fall into two main molecular groups designated “benign” and “malignant” meningiomas. While all typical meningiomas fall into the benign group and all anaplastic meningiomas fall into the malignant group, atypical meningiomas distribute into either one of these groups. We have identified a miRNA signature that distinguishes benign meningiomas from malignant meningiomas. We studied the gene expression profiles of 340 mammalian miRNAs in 37 primary meningioma tumors by means of DNA microarrays.
Project description:Meningiomas are common brain tumors that are classified into three World Health Organization grades (Grade I: benign, Grade II: atypical and Grade III: malignant) and are molecularly ill-defined tumors. The purpose of this study was identify microRNA (miRNA) molecular signatures unique to the different grades of meningiomas correlating them to prognosis. We have used a miRNA expression microarray to show that meningiomas of all three grades fall into two main molecular groups designated “benign” and “malignant” meningiomas. While all typical meningiomas fall into the benign group and all anaplastic meningiomas fall into the malignant group, atypical meningiomas distribute into either one of these groups. We have identified a miRNA signature that distinguishes benign meningiomas from malignant meningiomas.
Project description:Meningiomas represent one of the most common and clinically heterogeneous brain tumor types that only modestly correlate with histopathologic features. While emerging molecular profiling efforts have linked specific genomic drivers to distinct clinical patterns, the proteomic landscape of meningiomas remains largely unexplored. We utilize mass spectrometry to profile a clinically well-annotated cohort (n=69) of meningiomas stratified to span all three World Health Organization (WHO) grades and various degrees of clinical aggressiveness. In total, we quantify 3042 unique proteins and compare the patterns across different clinical parameters. Unsupervised clustering analysis highlighted distinct proteomic (n=106 proteins, Welch’s t-test, P<0.01) and pathway-level (e.g. Notch and PI3K/AKT/mTOR) differences between convexity and skull base meningiomas. Supervised comparative analyses of different pathological grades revealed distinct patterns between benign (WHO Grade I) and atypical/malignant (WHO Grade II and III) meningiomas with classic oncogenes often enriched in higher grade lesions. Independent of WHO grade, clinically aggressive meningiomas, that rapidly recurred, also had distinctive protein patterns that converged on mRNA processing and impaired activation of the extracellular matrix naba matrisome complex. Larger sized meningiomas, and those with previous radiation exposure, also had distinct protein profiles. Collectively, we highlight distinct clinically-dependent proteomic patterns of meningiomas that may help better predict outcome and guide the development of more personalized and directed therapies.
Project description:Meningiomas are common brain tumours arising from meningeal tissue. Despite the majority of them displaying benign features, they can cause mild to severe morbidity. The current main therapeutic approach is complete tumour resection commonly with adjunct radiation therapy. However, tumour location can hamper complete resection and chemotherapies are ineffective. In this study we aim to elucidate dysregulated pathways in meningioma pathogenesis and identify novel molecular targets by deciphering the proteome and phosphoproteome of different grades of meningiomas. Tumour lysates were collected from grade I, II and III frozenmeningioma specimens and three normal healthy human meninges.
Project description:Meningiomas are common brain tumours arising from meningeal tissue. Despite the majority of them displaying benign features, they can cause mild to severe morbidity. The current main therapeutic approach is complete tumour resection commonly with adjunct radiation therapy. However, tumour location can hamper complete resection and chemotherapies are ineffective. In this study we aim to elucidate dysregulated pathways in meningioma pathogenesis and identify novel molecular targets by deciphering the proteome and phosphoproteome of different grades of meningiomas. Tumour lysates were collected from grade I, II and III frozenmeningioma specimens and three normal healthy human meninges.
Project description:Meningiomas are common brain tumours arising from meningeal tissue. Despite the majority of them displaying benign features, they can cause mild to severe morbidity. The current main therapeutic approach is complete tumour resection commonly with adjunct radiation therapy. However, tumour location can hamper complete resection and chemotherapies are ineffective. In this study we aim to elucidate dysregulated pathways in meningioma pathogenesis and identify novel molecular targets by deciphering the proteome and phosphoproteome of different grades of meningiomas. Tumour lysates were collected from grade I, II and III frozemeningioma specimens and three normal healthy human meninges.
Project description:Meningiomas are frequent central nervous system tumors. Although most meningiomas are benign (WHO grade I) and curable by surgery, WHO grade II and III tumors remain therapeutically challenging due to frequent recurrence. Interestingly, relapse also occurs in some WHO grade I meningiomas. Hence, we investigated the transcriptional features defining aggressive (recurrent, malignantly progressing or WHO grade III) meningiomas in 144 cases. Meningiomas were categorized into non-recurrent (NR), recurrent (R), and tumors undergoing malignant progression (M) in addition to their WHO grade. Unsupervised transcriptomic analysis in 62 meningiomas revealed transcriptional profiles lining up according to WHO grade and clinical subgroup. Notably aggressive subgroups (R+M tumors and WHO grade III) shared a large set of differentially expressed genes (n=332; p<0.01, FC>1.25). In an independent multicenter validation set (n=82), differential expression of 10 genes between WHO grades was confirmed. Additionally, among WHO grade I tumors differential expression between NR and aggressive R+M tumors was af rmed for PTTG1, AURKB, ECT2, UBE2C and PRC1, while MN1 and LEPR discriminated between NR and R+M WHO grade II tumors. Univariate survival analysis revealed a significant association with progression-free survival for PTTG1, LEPR, MN1, ECT2, PRC1, COX10, UBE2C expression, while multivariate analysis identified a prediction for PTTG1 and LEPR mRNA expression independent of gender, WHO grade and extent of resection. Finally, stainings of PTTG1 and LEPR confirmed malignancy-associated protein expression changes. In conclusion, based on the so far largest study sample of WHO grade III and recurrent meningiomas we report a comprehensive transcriptional landscape and two prognostic markers. Comparative transcriptomic analysis of 62 low- and high-grade meningiomas
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.