Project description:To understand how the qDTY12.1 interacts with other genes within the genome to give better physiological adaptations and better yield; the leaves transcriptome of DTY12.1 parents (Vandana , Way Rarem) and DTY12.1 NIL (481-B) were compared under control and drought conditions. Drought induced gene expression was studied in the leaves of the rice plants subjected to severe reproductive stage drought. Seeds of Vandana, Way Rarem, and 481-B were sown into rotovated soil at a rate of 2.0 g m-1 into plots of 3 rows X 3 m. The three genotypes were sown in three replications in a randomized complete block design.
Project description:The severity of impact of drought on crops is contingent on the developmental stage of the plant, with the most sensitive stage being the reproductive stage. Hence, gene expression profiling has been used to understanding drought response and resistance mechanism in rice. Here we present drought transcriptomes of rice in three developmental stages and gain insights into the processes and regulatory mechanisms involved in common and stage specific drought responses. Total RNA was isolated from the rice seedlings, vegetative (V4) and reproductive (R4) tissues of both control and stress treated plants for hybridization on Affymetrix microarrays. Two independent replicates for seedling and reproductive stages, and three replicates for vegetative stages were generated, for both control and stress samples. For drought treatments, plants were gradually subjected to field drought conditions in order to reach 50% field capacity (FC) by regulating water supply, whereas control plants were maintained at 100% FC.
Project description:Comparative transcriptional profiling of two contrasting rice genotypes,IRAT109 (drought-resistant japonica cultivar) and ZS97 (drought-sensitive indica cultivar), under drought stress during the reproductive stage Four samples with RWC in the range of 94–95% (no stress, D0), 83–88% (slight drought in which leaves were slightly rolled, D1), 74–78% (moderate drought in which about half of each leaf was rolled, D2), and 65–69% (severe drought in which all leaves were completely rolled, D3) were collected for expression profiling analysis using an Affymetrix GeneChip.
Project description:To understand how the qDTY12.1 interacts with other genes within the genome to give better yield under drought; the spikelets transcriptome of DTY12.1 parents (Vandana , Way Rarem) and DTY12.1 NIL (481-B) were compared under control and drought conditions. Drought induced gene expression was studied in the spikelets of the rice plants subjected to severe reproductive stage drought. Seeds of Vandana, Way Rarem, and 481-B were sown into rotovated soil at a rate of 2.0 g m-1 into plots of 3 rows X 3 m. The three genotypes were sown in three replications in a randomized complete block design.
Project description:Drought-responsive genes in soybean leaves were successfully identified using Affymetrix Soybean Gene 1.0 ST arrays on leaves samples of reproductive-stage soybean plants. R1 soybean plants planted in pots were imposed drought by withholding water for 5 days until the soil moisture content dropped to 5%, and 3rd trifoliates (now at the R2 stage) were collected for expression profiling.
Project description:To identify genes that are drought-responsive we conducted drought (soil water depletion) experiments on 3-month-old *P*. *trichocarpa *clonal plants. The plants undergo five different stages based on the appearance of their shoots and leaves during the drought experiments. Stage I: The shoot and leaves are green, and the leaves are well-spread. Stage II: The leaves are droopy. Stage III: The shoot is droopy, and the leaves are partially dry. Stage IV: The leaves are brown and totally dry. Stage V: The shoot is brown. With fully irrigation, the soil water content is 74% and the xylem water content is 80.6%. Plants in Stage III (Day 5) are under a mild drought state. The soil and xylem water content in Stage III dropped to 33% and 75.3%, respectively. Stage IV (Day 6-10) is a severe drought state where the soil and xylem water content continued decreasing to 29% and 74.3%, respectively in Day 7. The stressed plants from Stage I-IV could all recover in 3 days after rehydration, but the plants in Stage V could not recover after rehydration.
Project description:Global gene expression analysis of AtDREB1A transgenic rice line (TL4) at reproductive stage under drought stress was conducted using microarray to explore the drought stress-responsive transcription pathways. Drought stress was imposed at late vegetative stage till booting of the plants. Flag leaf was collected on 14th day of the drought stress. Drought stress was imposed on T3 plants of two homozygous transgenic rice events of PS2 and NT plants by withholding irrigation for 14 days in the National Phytotron Facility, IARI.
Project description:Rice is a critically important food source but yields worldwide are vulnerable to periods of drought. We exposed eight genotypes of upland and lowland rice (Oryza sativa L. ssp. japonica and indica) to drought stress at the late vegetative stage and harvested leaves for protein extraction and subsequent label-free shotgun proteomics. Gene ontology analysis revealed some differentially expressed proteins were induced by drought in all eight genotypes; we speculate that these play a universal role in drought tolerance. However, some highly genotype-specific patterns of response to drought suggest that some mechanisms of metabolic reprogramming are not universal. Such proteins had largely uncharacterized functions, making them biomarker candidates for drought tolerance screens.
Project description:Transcriptome profile for roots of the rice plants which showed favorable morpho-physiological adaptation when subjected to severe drought stress