Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:In vitro gut microbiota models are often used to study drug-microbiome interaction. Similar to culturing individual microbial strains, the biomass accumulation of in vitro gut microbiota follows a logistic growth curve. Current studies on in vitro gut microbiome responses introduce drug stimulation during different growth stages, e.g. lag phase or stationary phase. However, in vitro gut microbiota in different growth phases may respond differently to a same stimuli. Therefore, in this study, we used a 96-deep well plate-based culturing model (MiPro) to culture the human gut microbiota. Metformin, as the stimulus, was added at the lag, log and stationary phases of growth. Microbiome samples were collected at different time points for optical density and metaproteomic functional analysis. Results show that in vitro gut microbiota responded differently to metformin added during different growth phases, in terms of the growth curve, alterations of taxonomic and functional compositions. The addition of drugs at log phase leads to the greatest decline of bacterial growth. Metaproteomic analysis suggested that the strength of the metformin effect on the gut microbiome functional profile was ranked as lag phase > log phase > stationary phase. Our results showed that metformin added at lag phase resulted in a significantly reduced abundance of the Clostridiales order as well as an increased abundance of the Bacteroides genus, which was different from stimulation during the rest of the growth phase. Metformin also resulted in alterations of several pathways, including energy production and conversion, lipid transport and metabolism, translation, ribosomal structure and biogenesis. Our results indicate that the timing for drug stimulation should be considered when studying drug-microbiome interactions in vitro.
Project description:Three human gut microbiome samples from different individuals were cultured in an optimized culture medium with or without the presence of different sugars (10 mM glucose, 20 mM fructose, 10 mM glucose + 20 mM fructose, or 10 mM kestose). Samples were cultured in technical triplicates, and were taken at 0 hr, 1hr, 5 hr, 12 hr and 24 hr of culturing for optical density and metaproteomic analyses. Cultured microbiota cells were subjected to metaproteomics analysis using LC-MS/MS and a TMT approach.
Project description:The ERC “MINERVA” project (GA 724734) aims at developing a multi-organ-on-a-chip engineered platform to recapitulate in vitro the main players involved in the MGBA crosstalk: the microbiota, the gut epithelium, the immune system, the blood-brain barrier and the brain. In this context, the gut epithelium represents a physiological barrier that separates the intestinal lumen from the systemic circulation, and in several pathological circumstances, seems that its permeability might significantly increase and allow the passage of biologically active molecules into the blood vessels surrounding the intestinal mucosa. In the present work, we present our MINERVA 2.0 device and our innovative gut-on-a-chip device obtained by culturing in MINERVA 2.0 and a human gut epithelial CaCo2 cell based model. In particular, we have cultured the cells under perfusion and have assessed cell behavior by addressing cellular viability, tight junction imaging, apparent permeability by FITC-Dextran and transepithelial electrical resistance evaluation. Transcriptomic profile was used to further elucidate the effects of dynamic perfusion on Caco-2 cells.
Project description:To test the effects of metformin on the human gut micorbiome, we fist collected human stool samples. We processed the samples in vitro culturing under anaerobic condition for 24 hours using the rapidAIM assay and either and cultured them with metformin, or DMSO as a control. We know that metformin can alter the human gut microbiome and were interested in better analyzing which functional proceses were altered.
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.