Project description:This project presents field metaproteomics data from Trichodesmium colonies collected from the surface ocean. Most were collected from the tropical and subtropical Atlantic ocean, but there is also data from the long term Bermuda Atlantic Time Series and Hawaii Ocean Time Series. Trichodesmium is a globally important marine microbe and its growth and nitrogen fixation activity is limited by nutrient availability in the surface ocean. This dataset was generated to answer questions about limitations on Trichodesmium's growth and activity in the nature.
Project description:Ammonia oxidizer community structure were examined in a depth profile from 20 to 2000 m at the Bermuda Atlantic Time-series Study using a functional gene microarray to look at amoA diversity
Project description:The diazotroph Trichodesmium is an important contributor to marine dinitrogen (N2) fixation, supplying so-called new N to phytoplankton in typically N-limited ocean regions. Identifying how iron (Fe) and phosphorus (P) influence Trichodesmium activity and biogeography is an ongoing area of study, where predicting patterns of resource stress is complicated in part by the uncertain bioavailability of organically complexed Fe and P. Here, a comparison of 26 metaproteomes from picked Trichodesmium colonies identified significantly different patterns between three ocean regions: the western tropical South Pacific, the western North Atlantic, and the North Pacific Subtropical Gyre. Trichodesmium metaproteomes across these regions significantly differed in KEGG submodule signals, and vector fitting showed that dissolved Fe, phosphate, and temperature significantly correlated with regional proteome patterns. Populations in the western tropical South Pacific appeared to modulate their proteomes in response to both Fe and P stress, including a comparatively low relative abundance of the N2 fixation marker protein, NifH. Significant increases in the relative abundance of both Fe and P stress marker proteins previously validated in culture studies suggested that Trichodesmium populations in the western North Atlantic and North Pacific were P-stressed and Fe-stressed, respectively. These patterns recapitulate established regional serial and co-limitation patterns of resource stress on phytoplankton communities. Evaluating community stress patterns may therefore predict resource controls on diazotroph biogeography. These data highlight how Trichodesmium modulates its metabolism in the field and provide an opportunity to more accurately constrain controls on Trichodesmium biogeography and N2 fixation.
Project description:The global significance of marine non-cyanobacterial diazotrophs, notably heterotrophic bacterial diazotrophs (HBDs), has become increasingly clear. Understanding N2 fixation rates for these largely uncultured organisms poses a challenge due to uncertain growth requirements and complex nitrogenase regulation. We identified Candidatus Thalassolituus haligoni as an Oceanospirillales member, closely related to other significant γ-proteobacterial HBDs. Pangenome analysis reinforces this classification, indicating the isolate belongs to the same species as the uncultured metagenome-assembled genome Arc-Gamma-03. Analysis of the nifH gene in amplicon sequencing libraries reveals the extensive distribution of Cand. T. haligoni across the Pacific, Atlantic and Arctic Oceans. Through combined proteomic analysis and N2 fixation rate measurements, we confirmed the isolate’s capacity for nitrate independent N2 fixation, although a clear understanding of nitrogenase regulation remains unclear. Overall, our study highlights the significance of Cand. T. haligoni as the first globally distributed, cultured model species within the understudied group of Oceanospirillales, and γ-HBDs in general.
Project description:This project characterizes the metabolic consequences of the daily physiological rhythms and diel vertical migration for the model subtropical copepod, Pleuromamma xiphias. P. xiphias were collected near the Bermuda Atlantic Time Series in plankton tows at different times of day, representing different parts of their daily vertical migration. Single copepods were isolated from the tows and flash-frozen for proteomics analysis.
Project description:<p>Untargeted features from the Bermuda Atlantic Time-series Study (BATS) site collected during the time period spanning 2016 to 2019. Metabolites were sampled from surface seawater to 1000 m deep and throughout the year. Dissolved organic matter extracts were analyzed in positive and negative ion mode with an ultra-high performance liquid chromatography system (Vanquish UHPLC, Thermo Scientific) coupled with an Orbitrap Fusion Lumos Tribid mass spectrometer.</p>