Project description:In search for factors, overexpression of which in human dermal fibroblasts causes direct conversion to cells similar to keratinocytes, micro RNA expression profiles of human primary keratinocytes and human primary dermal fibroblasts are investigated. Skin samples obtained from 3 different sites of 1 subject were used for establishment of 3 primary keratinocytes and 3 primary dermal fibroblasts. Thus obtained 3 primary keratinocytes and primary dermal fibroblasts underwent micro RNA profiling.
Project description:BMP signalling is a potent regulator of skin morphogenesis, homeostasis and remodelling. However, molecular mechanisms underlying its involvement in regulating gene expression programs in keratinocytes and fibroblasts remain largely unknown. We analyzed the effect of BMP4 tratment on gene expression programs in human primary epidermal keratinocyte and dermal fibroblasts cultures. We identified specific changes in gene expression programs for each cell type. The primary human epidermal keratinocytes and dermal fibroblasts were treated with recombinant BMP4 or solvent control for 8 hours to reveal early and intermediate response genes. The RNA was isolated and used for micro-array analysis. Changes in gene expression programs were analyzed for each cell type and were compared between cell types.
Project description:Skin is usually exposed during human exposures to ionizing radiation, however there are few experiments that evaluate the radiation responsiveness of the cells of the epidermis (keratinocytes) and those of the dermis (fibroblasts) in the same studies. We evaluated the transcriptional responses of quiesent primary keratinocytes and fibroblasts from the same individual and compared them with quiescent keratinocytes and fibroblasts that were immortalized by human telomerase (hTert). The primary transcriptional responses to 10-500 cGy ionizing radiation were p53-mediated responses; however, we did identify distinct responses between the keratinocytes and the fibroblasts. Keywords: keratinocytes and fibroblasts - dose response to ionizing radiation
Project description:Skin is usually exposed during human exposures to ionizing radiation, however there are few experiments that evaluate the radiation responsiveness of the cells of the epidermis (keratinocytes) and those of the dermis (fibroblasts) in the same studies. We evaluated the transcriptional responses of quiesent primary keratinocytes and fibroblasts from the same individual and compared them with quiescent keratinocytes and fibroblasts that were immortalized by human telomerase (hTert). The primary transcriptional responses to 10-500 cGy ionizing radiation were p53-mediated responses; however, we did identify distinct responses between the keratinocytes and the fibroblasts. Experiment Overall Design: Four cell types (primary keratinocytes, hTert immortalized keratinocytes, primary fibroblasts, hTert immortalized fibroblasts) grown to quiescence, treated with 0, 10, 100 or 500 cGy gamma irradiation, RNA collected at 4 hrs.
Project description:Atopic dermatitis, a chronic inflammatory skin disease with increasing prevalance, is closely associated with skin barrier defects. A cytokine related to disease severity and inhibition of keratinocyte differentiation is IL-31. To identify its molecular targets, IL-31-dependent gene expression was determined in 3-dimensional organotypic skin models. In this data set we include expression data from human 3D skin models treated with or without IL-31 for 2, 8, 24 and 48 hours. As a source of keratinocytes HaCaT cells were used. These are immortalized primary keratinocytes. Human dermal fibroblasts were derived from a skin biopsy. A total of 8 samples were analyzed. We compared the control vs the IL-31 treated sample for each time point.
Project description:Hair follicle formation depends on reciprocal epidermal-dermal interactions and occurs during skin development, but not in adult life. This suggests that the properties of dermal fibroblasts change during postnatal development. To examine this, we used a PdgfraEGFP mouse line to isolate GFP-positive fibroblasts from neonatal skin, adult telogen and anagen skin and adult skin in which ectopic hair follicles had been induced (EF skin) by transgenic epidermal activation of beta-catenin. We also isolated epidermal cells from each mouse. The gene expression profile of EF epidermis was most similar to that of anagen epidermis, consistent with activation of beta-catenin signalling. In contrast, adult dermis with ectopic hair follicles more closely resembled neonatal dermis than adult telogen or anagen dermis. In particular, genes associated with mitosis were upregulated and extracellular matrix-associated genes were downregulated in neonatal and EF fibroblasts. We confirmed that sustained epidermal beta-catenin activation stimulated fibroblasts to proliferate to reach the high cell density of neonatal skin. In addition, the extracellular matrix was comprehensively remodelled, with mature collagen being replaced by collagen subtypes normally present only in developing skin. The changes in proliferation and extracellular matrix composition originated from a specific subpopulation of fibroblasts located beneath the sebaceous gland. Our results show that adult dermis is an unexpectedly plastic tissue that can be reprogrammed to acquire the molecular, cellular and structural characteristics of neonatal dermis in response to cues from the overlying epidermis. We have isolated the following populations of cells from mouse back skin by flow cytometry: 1A) GFP+ WT neonatal dermal fibroblasts, 1B) ItgA6+ WT neonatal epidermal keratinocytes, 2A) GFP+ WT telogen dermal fibroblasts, 2B) ItgA6+ WT telogen epidermal keratinocytes, 3A) GFP+ D2 transient activation (anagen) dermal fibroblasts, 3B) ItgA6+ D2 transient activation (anagen) epidermal keratinocytes, 4A) GFP+ D2 sustained activation (ectopic follicles) dermal fibroblasts, 4B) ItgA6+ D2 sustained activation (ectopic follicles) epidermal keratinocytes
Project description:Keloids are scars that extend beyond original wounds and are resistant to treatment. In order to improve understanding of the molecular basis of keloid scarring, we have assessed the genomic profiles of keloid fibroblasts and keratinocytes. Skin and scar tissues were obtained for isolation of primary keratinocytes and fibroblasts. Keloid scars were excised from patients undergoing scar excision surgery, normal skin samples were isolated from patients undergoing elective plastic surgery. Primary culters were prepared for keratinocytes and fibroblasts, and were harvested for analysis up to passage three. Nine keloid scars, for adjacent non-lesional keloid skin samples, and three normal skin samples were obtained and cultured. RNA was isolated using RNeasy, and quality verified using an Agilent 2100 Bioanalyzer. Labeling and hybridization to Affymetrix Human Gene 1.0 ST microarray chips was performed by the Vanderbilt Genome Sciences Resource at Vanderbilt University Medical Center.
Project description:In skin homeostasis, dermal fibroblasts are responsible for coordinating the migration and differentiation of overlying epithelial keratinocytes. As hairy skin heals faster than non-hairy skin, we hypothesised that follicular fibroblasts would accelerate skin re-epithelialisation after injury faster than interfollicular fibroblasts. We found that hair follicle dermal papilla fibroblast conditioned media (DPFi CM) could significantly accelerate wound closure compared to controls partly due to the presence of sAXL in this media. We used microarrays to identify upregulated and downregulated genes in human epidermal keratinocytes incubated with sAXL, DPFi CM and Epilife (keratinocyte growth media;control) after scratch wounds in vitro.
Project description:Analyses of IL-1b-induced transcriptome in various skin-relevant cell types (keratinocytes, dermal fibroblasts, dermal microvascular endothelial cells, mononuclear immune cells) by RNASeq method disclosed an overlap of upregulated molecules among the different cell types. Matching cellular IL-1 receptor levels, dermal fibroblasts showed both the strongest and broadest IL-1b response.