Project description:PAPD5 is one of the seven members of non-canonical poly(A) polymerases in human cells. There are previous reports about polyadenylation dependent degradation of pre-ribosomal RNAs and uridylation dependent degradation of histone mRNAs in vivo. In this study, we observed polyadenylation but not polyuridylation activity of PAPD5 with in vitro assays. We aimed to get genome-wide targets of PAPD5 and used PAR-CLIP and deep sequencing for this purpose. Recombinant version of PAPD5 is expressed in HEK293 human cell lines and its genome wide targets are obtained with PAR-CLIP and deep sequencing as two replicate experiments. The short reads in the deep sequencing libraries of PAPD5 replicates and an unrelated protein to polymerization from a previous study, IGF2BP1, are aligned to the hg18 human genome assembly. The biological variance of the read counts in overlapping 100-nucleotide-long-windows is estimated between the PAPD5 replicates and further used in the differential expression estimations between the 100-nucleotide windows in PAPD5 replicates and IGF2BP1. The top differentially expressed windows in PAPD5 and IGF2BP1 are further annotated using gene and repeat tracks from UCSC.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Exceptional preservation of endogenous organics such as collagens and osteocytes has been frequently reported in Mesozoic dinosaur fossils. The persistence of soft tissue in Mesozoic fossil bones has been challenged because of the susceptibility of proteins to degradation and because bone porosity allows microorganisms to colonize the inner microenvironments through geological time. Although protein lability has been studied extensively, the genomic diversity of microbiomes in dinosaur fossil bones and their potential roles in bone diagenesis remain underexplored. Genome-resolved metagenomics and metaproteomics were performed, therefore, on the microbiomes recovered from a Late Cretaceous Centrosaurus bone and its encompassing mudstone that were aseptically excavated in Dinosaur Provincial Park, Alberta, Canada, in order to provide insight into the genomic potential for bone alteration.
Project description:Chemostat incubations were established and inoculated with sediments collected from Canyon Creek, Calgary, Alberta, Canada. The chemostats experienced oxic-anoxic change of different frequency, High-frequency, Medium-frequency and Low-frequency. 18 samples were collected at the end of the final oxic phase and the final anoxic phase in the triplicated chemostats for metagenomic and metaproteomic analysis. 26 genomes were assembled from metagenomes. Proteomes were used to investigate translational regulation of each population associated with a genome.