ABSTRACT: Transcriptome analysis of T. reesei CBS999.97, backcrossed female fertile strains in QM6a genetic background and QM6a upon growth on cellulose
Project description:We perform a self hybridisation comprative genomic hybridization (CGH) in order to validate the probe tiling design we done on Trichoderma reesei. This hybridization was done using QM6a wild type strain.
Project description:We perform a self hybridisation comprative genomic hybridization (CGH) in order to validate the probe tiling design we done on Trichoderma reesei. This hybridization was done using QM6a wild type strain. One biological replicate
Project description:Trichoderma reesei is the main industrial producer of cellulases and hemicellulases used to depolymerize biomass in many biotechnical applications. Many production strains in use have been generated by classical mutagenesis. In this study we characterized genomic alterations in hyperproducing mutants of T. reesei by high-resolution comparative genomic hybridisation tiling array. We carried out aCGH analysis of four hyperproducing strains (QM9123, QM9414, NG14 and RutC-30) using QM6a genome as a reference. ArrayCGH analysis identified dozens of mutations in each strain analyzed. 2.1 million oligonucleotide probe custom aCGH (HD2 format, RocheNimblegen) was designed according to T. reesei strain QM6a genome v2.0 (http://genome.jgi-psf.org/Trire2/Trire2.home.html). 14 samples are included in this set; 3 replicates of each strain (except two replicates of QM9123) were analyzed (four mutant strains and QM6a control strain for self-hybridization)
Project description:Trichoderma reesei is the main industrial producer of cellulases and hemicellulases used to depolymerize biomass in many biotechnical applications. Many production strains in use have been generated by classical mutagenesis. In this study we characterized genomic alterations in hyperproducing mutants of T. reesei by high-resolution comparative genomic hybridisation tiling array. We carried out aCGH analysis of four hyperproducing strains (QM9123, QM9414, NG14 and RutC-30) using QM6a genome as a reference. ArrayCGH analysis identified dozens of mutations in each strain analyzed.
Project description:The ascomycete Trichoderma reesei is an industrial producer of cellulolytic and hemicellulolytic enzymes and also serves as a model for investigations on these enzymes and their genes. The strain QM9978 has a cellulase negative phenotype and therefore presents a valuable tool for understanding the mechanisms underlying cellulase regulation. A transcriptomic analyses of the cellulase negative strain QM9978 and the original strain QM6a have been performed to identify the genetic differences between QM6a and QM9978 leading to the cellulase-negative phenotype
Project description:We report the gene expression of T. reesei QM6a and Δace1. Both strains were cultivated for 24 h on Mandels-Andreotti medium containing D-glucose as carbon source. Mycelia were then transferred to Mandels-Andreotii medium containin D-mannitol (1%) as carbon source for three hours.
Project description:MicroRNAs (miRNAs) are small non-coding RNAs capable of negatively regulating gene expression. Trichoderma reesei is an industrial filamentous fungus that can secrete abundant hydrolases for cellulosic biofuels. Recently, microRNA-like RNAs (milRNAs) were discovered in several filamentous fungi rather than T. reesei. The purpose of this study was to explore the presence of milRNA in T. reesei, to characterize the differential expression of T. reesei milRNA under cellulose induction, and to reveal the target genes of milRNA involved in cellulase production. Two small RNA libraries of cellulose induction (IN) or non-induction (CON) were generated and sequenced using Solexa sequencing technology. A total of 664,463 and 529,545 unique sequences, representing 1,271 and 1,021 unique small RNAs, were obtained from the IN and CON samples, respectively. Thirteen milRNAs were finally identified in T. reesei using the hairpin structure analysis. The milRNAs profiles obtained in deep sequencing were validated by RT-qPCR assay. The miRanda program predicts a number of potential targets for T. reesei milRNAs, including several hydrolases and carbon catabolite repressor Cre1.The presence and differential expression of T. reesei milRNAs, along with their predicted targets indicate that milRNAs might play a regulatory role in cellulase induction. This work lays foundation for further functional study of fungal milRNAs and their industrial application.