Project description:We applied direct RNA long read sequencing for characterization of transcripts from constructs inserted into HEK293T mammalian cells with different promoters. Direct RNA sequencing was performed on an Oxford Nanopore GridION device using the Direct Sequencing Kit (SQK-RNA004, date accessed 15 May 2024), MinION RNA flow cell (FLO-MIN00RA), and data pre-processing was performed with MinKNOW (v24.06.10).
Project description:Transposon insertion site sequencing (TIS) is a powerful method for associating genotype to phenotype. However, all TIS methods described to date use short nucleotide sequence reads which cannot uniquely determine the locations of transposon insertions within repeating genomic sequences where the repeat units are longer than the sequence read length. To overcome this limitation, we have developed a TIS method using Oxford Nanopore sequencing technology that generates and uses long nucleotide sequence reads; we have called this method LoRTIS (Long Read Transposon Insertion-site Sequencing). This experiment data contains sequence files generated using Nanopore and Illumina platforms. Biotin1308.fastq.gz and Biotin2508.fastq.gz are fastq files generated from nanopore technology. Rep1-Tn.fastq.gz and Rep1-Tn.fastq.gz are fastq files generated using Illumina platform. In this study, we have compared the efficiency of two methods in identification of transposon insertion sites.
Project description:We have used the genetic resources of Arabidopsis thaliana to generate mutant lines that have reactivated TE expression. We used these lines with long-read Oxford Nanopore sequencing technology to capture Transposable Element (TE) mRNAs for TE transcript annotation.
Project description:Long-read RNA sequencing is a powerful technology for transcriptomics, but low throughput and high cost pose challenges. Adaptive sampling, a feature of Oxford Nanopore Technologies, offers real-time enrichment by selectively ejecting non-target molecules. We evaluate adaptive sampling for human transcriptome analysis.
Project description:S. meliloti strains with a bi- and monopartite genome configuration were constructed by consecutive Cre/lox-mediated site-specific fusions of the secondary replicons. Beside the correct genomic arrangements, these strains and precursors were tested for variations in the nucleotide sequence. Futher, a marker fequency analysis was performed to test if replication is initiated at all origins and to determine the replication termination regions of the triple replicon fusion molecule. To gain the sequence data for these analyses, respective strains were applied to whole genome sequencing using an Illumina MiSeq-System and Oxford Nanopore (MinION) sequencing technology.
Project description:This dataset contains Xdrop followed by oxford nanopore long read sequencing performed in target tRNA gene deletion clones in HAP1 (t72) and HepG2 (t15). By applying de novo assembly based approach to Xdrop-LRS data, we identified Cas9-induced on-target genomic alteration.
Project description:The LRGASP challenge encompasses different human, mouse, and manatee samples sequenced using multiple combinations of protocols and platforms. Different challenges will use distinct subsets of the samples for evaluation. The long-read sequencing platforms used in these challenges are the Pacific Biosciences (PacBio) Sequel II, Oxford Nanopore (ONT) MinION and PromethION. Samples will also be sequenced on the Illumina HiSeq 2500. The primary LRGASP library prep protocols are “standard” cDNA sequencing, direct RNA sequencing, R2C2, and CapTrap. Each sample will also include Lexogen SIRV-Set 4 spike-ins. We will also provide simulated PacBio and ONT data as part of the evaluations. This particular study focuses on single strand CAGE sequencing of human iPSCs, defining CAGE peaks from Illumina HiSeq 2500 (SR: 150 cycles) of two biological replicates for use in the LRGASP challenge.
Project description:Understanding gene expression diversity across human populations is essential for accurate genome annotation and disease interpretation. However, existing annotations are primarily based on European-derived transcriptomic data, potentially limiting their applicability to other populations. This study aims to assess population-specific transcript diversity and its impact on gene annotation. To achieve this, we performed long-read RNA sequencing on lymphoblastoid cell lines from 43 individuals across eight globally diverse populations. Our workflow included RNA extraction, cDNA synthesis, and sequencing using Oxford Nanopore long-read technology, followed by transcript assembly and comparison with existing gene annotations. We also integrated novel transcripts into reference annotations to evaluate their effect on allele-specific transcript usage detection. This work provides a critical step toward improving transcriptome annotation across diverse populations, ensuring a more comprehensive representation of human genetic variation.