Project description:Bartonella grahamii colonizes rodents worldwide and has been detected in questing Ixodes ricinus ticks. Here, the first human B. grahamii infection confirmed by multilocus sequence typing is reported. The route of transmission and clinical picture of the patient are similar to those seen in patients with cat scratch disease, which is typically diagnosed as a Bartonella henselae infection.
Project description:BackgroundRodents represent a high-risk reservoir for the emergence of new human pathogens. The recent completion of the 2.3 Mb genome of Bartonella grahamii, one of the most prevalent blood-borne bacteria in wild rodents, revealed a higher abundance of genes for host-cell interaction systems than in the genomes of closely related human pathogens. The sequence variability within the global B. grahamii population was recently investigated by multi locus sequence typing, but no study on the variability of putative host-cell interaction systems has been performed.ResultsTo study the population dynamics of B. grahamii, we analyzed the genomic diversity on a whole-genome scale of 27 B. grahamii strains isolated from four different species of wild rodents in three geographic locations separated by less than 30 km. Even using highly variable spacer regions, only 3 sequence types were identified. This low sequence diversity contrasted with a high variability in genome content. Microarray comparative genome hybridizations identified genes for outer surface proteins, including a repeated region containing the fha gene for filamentous hemaggluttinin and a plasmid that encodes a type IV secretion system, as the most variable. The estimated generation times in liquid culture medium for a subset of strains ranged from 5 to 22 hours, but did not correlate with sequence type or presence/absence patterns of the fha gene or the plasmid.ConclusionOur study has revealed a geographic microstructure of B. grahamii in wild rodents. Despite near-identity in nucleotide sequence, major differences were observed in gene presence/absence patterns that did not segregate with host species. This suggests that genetically similar strains can infect a range of different hosts.
Project description:We describe the clinical and laboratory features of a 55-year-old human immunodeficiency virus-negative female patient who presented with bilateral intraocular inflammatory disease (neuroretinitis type) and behavioral changes caused by a Bartonella grahamii infection. Diagnosis was based on the PCR analysis of DNA extracted from the intraocular fluids. DNA analysis of the PCR product revealed a 100% identity with the 16S rRNA gene sequence of B. grahamii. The patient was successfully treated with doxycycline (200 mg/day) and rifampin (600 mg/day) for 4 weeks. This is the first report that demonstrates the presence of a Bartonella species in the intraocular fluids of a nonimmunocompromised patient and that indicates that B. grahamii is pathogenic for humans.
Project description:Bartonella grahamii is one of the most prevalent Bartonella species in wild rodents and has been associated with human cases of neuroretinitis. The structure and distribution of genomic diversity in natural B. grahamii is largely unexplored. Here, we have applied a comprehensive population genomic and phylogenomic analysis to 172 strains of B. grahamii to unravel the genetic differences and influencing factors that shape its populations. The findings reveal a remarkable genomic diversity within the species, primarily in the form of single- nucleotide polymorphisms. The open pangenome of B. grahamii indicates a dynamic genomic evolution influenced by its ecological niche. Whole-genome data allowed us to decompose B. grahamii diversity into six phylogroups, each characterized by a unique "mosaic pattern" of hosts and biogeographic regions. This suggests a complex interplay between host specificity and biogeography. In addition, our study suggests a possible origin of European strains from Asian lineages, and host factors have a more significant impact on the genetic differentiation of B. grahamii than geographical factors. These insights contribute to understanding the evolutionary history of this pathogen and provide a foundation for future epidemiological research and public health strategies.ImportanceBartonella grahamii has been reported worldwide and shown to infect humans. Up to now, an effective transmission route of B. grahamii to humans has not been confirmed. The genetic evolution of B. grahamii and the relationship between B. grahamii and its host need to be further studied. The factors driving the genetic diversity of B. grahamii are still controversial. The results showed that the European isolates shared a common ancestor with the Chinese isolates. Host factors were shown to play an important role in driving the genetic diversity of B. grahamii. When host factors were fixed, geographic barriers drove B. grahamii microevolution. Our study emphasizes the importance of characterizing isolate genomes derived from hosts and geographical locations and provides a new reference for the origin of B. grahamii.