Project description:To characterize the genetic basis of hybrid male sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL - but not cis eQTL - were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility.
Project description:We have identified GATA-3 as a critical regulator of luminal cell differentiation in the mammary gland. Acute loss of GATA-3 in the adult mammary gland leads to an expansion of an undifferentiated luminal epithelium and the formation of a multi-layered epithelium. Here we report microarray analysis of mammary glands that have undergone acute loss of GATA-3 Adult GATA-3flox/flox; WAP-rtTA-Cre and GATA-flox/+; WAP-rtTA-Cre mice were administered doxyxcline for 5 days and their mammary glands harvested. Total RNA was extracted by the Trizol method. Het mammary gland total RNA was labeled with Cy5 while Null mammary gland total RNA was labeled with Cy3. Microarray hybridization was performed on spotted oligonucleotide microarrays with 38,000 features. Lowess print-tip normalization and analysis was performed on the Acuity software package (V 4.0)
Project description:We have identified GATA-3 as a critical regulator of luminal cell differentiation in the mammary gland. Acute loss of GATA-3 in the adult mammary gland leads to an expansion of an undifferentiated luminal epithelium and the formation of a multi-layered epithelium. Here we report microarray analysis of mammary glands that have undergone acute loss of GATA-3 Keywords: genetic modification
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other