Project description:Premise of the studyMicrosatellite markers were developed for a medicinal herb, Gentiana lawrencei var. farreri (Gentianaceae), for the future assessment of population genetic structure and potential hybridization events with related taxa.Methods and resultsUsing the 454 FLX+ sequencing platform, we obtained 81,717 clean reads with an average length of 291 bp. A total of 3031 primer pairs were designed, and 96 were selected for validation. A set of 20 fluorescently labeled primer pairs was further selected and screened for polymorphisms in three G. lawrencei var. farreri populations and one G. veitchiorum population. Among the four populations, the average number of alleles per locus was 15.2. Finally, a set of 17 unlinked loci were determined to be in Hardy-Weinberg equilibrium after two linked loci were removed.ConclusionsThe identified simple sequence repeat markers will be useful for genetic diversity and evolution studies in G. lawrencei var. farreri and related taxa.
Project description:BackgroundThe chloroplast (cp) genome is useful in plant systematics, genetic diversity analysis, molecular identification and divergence dating. The genus Gentiana contains 362 species, but there are only two valuable complete cp genomes. The purpose of this study is to report the characterization of complete cp genome of G. lawrencei var. farreri, which is endemic to the Qinghai-Tibetan Plateau (QTP).MethodsUsing high throughput sequencing technology, we got the complete nucleotide sequence of the G. lawrencei var. farreri cp genome. The comparison analysis including genome difference and gene divergence was performed with its congeneric species G. straminea. The simple sequence repeats (SSRs) and phylogenetics were studied as well.ResultsThe cp genome of G. lawrencei var. farreri is a circular molecule of 138,750 bp, containing a pair of 24,653 bp inverted repeats which are separated by small and large single-copy regions of 11,365 and 78,082 bp, respectively. The cp genome contains 130 known genes, including 85 protein coding genes (PCGs), eight ribosomal RNA genes and 37 tRNA genes. Comparative analyses indicated that G. lawrencei var. farreri is 10,241 bp shorter than its congeneric species G. straminea. Four large gaps were detected that are responsible for 85% of the total sequence loss. Further detailed analyses revealed that 10 PCGs were included in the four gaps that encode nine NADH dehydrogenase subunits. The cp gene content, order and orientation are similar to those of its congeneric species, but with some variation among the PCGs. Three genes, ndhB, ndhF and clpP, have high nonsynonymous to synonymous values. There are 34 SSRs in the G. lawrencei var. farreri cp genome, of which 25 are mononucleotide repeats: no dinucleotide repeats were detected. Comparison with the G. straminea cp genome indicated that five SSRs have length polymorphisms and 23 SSRs are species-specific. The phylogenetic analysis of 48 PCGs from 12 Gentianales taxa cp genomes clearly identified three clades, which indicated the potential of cp genomes in phylogenetics.DiscussionThe "missing" sequence of G. lawrencei var. farreri mainly consistent of ndh genes which could be dispensable under chilling-stressed conditions in the QTP. The complete cp genome sequence of G. lawrencei var. farreri provides intragenic information that will contribute to genetic and phylogenetic research in the Gentianaceae.
Project description:Understanding the genetic structure and evolutionary history of plants contributes to their conservation and utilization and helps to predict their response to environmental changes. The wildflower and traditional Chinese and Tibetan medicinal plant Gentiana lawrencei var. farreri is endemic to the Qinghai-Tibetan Plateau (QTP). To explore its genetic structure and evolutionary history, the genetic diversity, divergence, and demographics were analyzed in individuals from 31 locations across the QTP using 1 chloroplast marker and 10 nuclear microsatellite loci. High genetic diversity was detected in G. lawrencei var. farreri, and most of the genetic variance was found within populations. Values of F ST in G. lawrencei var. farreri from nuclear microsatellite and chloroplast data were 0.1757 and 0.739, respectively. The data indicated the presence of isolation by distance. The southeast edge of the QTP was the main refugium for G. lawrencei var. farreri, and one microrefugium was also detected in the plateau platform of the QTP. Both nuclear microsatellite and chloroplast data indicated that the populations were divided into two geographically structured groups, a southeast group and a northwest group. The current genetic pattern was mainly formed through recolonization from the two independent refugia. Significant melt was detected at the adjacent area of the two geographically structured groups. Approximate Bayesian computation showed that the northwest group had diverged from the southeast group, which then underwent population expansion. Our results suggest that the two-refugia pattern had a significant impact on the genetic structure and evolutionary history of G. lawrencei var. farreri.