Project description:The little pocket mouse, Perognathus longimembris, and its nine congeners are small heteromyid rodents found in arid and seasonally arid regions of Western North America. The genus is characterized by behavioral and physiological adaptations to dry and often harsh environments, including nocturnality, seasonal torpor, food caching, enhanced osmoregulation, and a well-developed sense of hearing. Here we present a genome assembly of Perognathus longimembris longimembris generated from PacBio HiFi long read and Omni-C chromatin-proximity sequencing as part of the California Conservation Genomics Project. The assembly has a length of 2.35 Gb, contig N50 of 11.6 Mb, scaffold N50 of 73.2 Mb, and includes 93.8% of the BUSCO Glires genes. Interspersed repetitive elements constitute 41.2% of the genome. A comparison with the highly endangered Pacific pocket mouse, P. l. pacificus, reveals broad synteny. These new resources will enable studies of local adaptation, genetic diversity, and conservation of threatened taxa.
Project description:Two thirds of Earth’s species have undergone population declines, leaving many vulnerable to genomic erosion and inbreeding depression. Genetic rescue can boost fitness of small populations, but perceived risks of outbreeding depression can limit its use. We quantified these trade-offs in hundreds of endangered Pacific pocket mice (Perognathus longimembris pacificus), combining whole genome sequences with fitness data. The impacts of genomic erosion in remnant populations were reversed in an admixed breeding program, suggesting potential benefits of genetic rescue. However, differences in chromosome numbers increase the risk of genetic incompatibilities. Fitness analyses suggested that although admixed karyotypes may have reduced fertility, non-admixed mice with low heterozygosity and high genetic load had even lower fitness, pointing to a greater risk of extinction if populations remain isolated.