ABSTRACT: Transcriptome analysis of Blimp1-sufficient (Ctrl) and Blimp1-deficient (CKO) CD4+ Foxp3+ regulatory (Treg) and Foxp3- effector (Teff) T cells
Project description:Although several markers have been associated with the characterization of regulatory T cells (Treg) and their function, no studies have investigated the dynamics of their phenotype during infection. Since the necessity of Treg to control immunopathology has been demonstrated, we used the chronic helminth infection model S. mansoni to address the impact on the Treg gene repertoire. Before gene expression profiling we first chose to study the localization and antigen-specific suppressive nature of classically defined Treg during infection. Presence of Foxp3+ cells were found especially in the periphery of granulomas and isolated CD4+CD25hiFoxp3+ Treg from infected mice blocked IFN-gamma and IL-10 cytokine secretion from infected CD4+CD25- effector T cells (Teff). Furthermore the gene expression patterns of Treg and Teff showed that in total 474 genes were significantly regulated during chronic schistosomiasis. Upon k-means clustering we identified genes exclusively regulated in all four populations including Foxp3, CD103, GITR, OX40 and CTLA-4: classical Treg markers. During infection however, several non-classical genes were up-regulated solely within the Treg population such as Slpi, Gzmb, Mt1, Fabp5, Nfil3, Socs2, Gpr177 and Klrg1. Using RT-PCR we confirmed aspects of the microarray data and in addition showed that the expression profile of Treg from S. mansoni-infected mice is simultaneously unique and comparative with Treg derived from other infections Regulatory T cells (Treg) or effector T cells (Teff) were FACS-sorted as CD4+CD25+ or CD4+CD25- from mesenteric lymph nodes (MLN) of naive mice or from mice infected with Schistosoma mansoni. Affymetrix MOE430A 2.0 genechips were used to identify genes differentially expressed in Treg or Teff under resting or infected conditions.
Project description:Effector (Teff) and regulatory (Treg) CD4 T cells undergo metabolic reprogramming to support proliferation and immune function. While Phosphatidylinositide 3-kinase (PI3K)/Akt/mTORC1 signaling induces the glucose transporter Glut1 and aerobic glycolysis for Teff proliferation and inflammatory function, mechanisms that regulate Treg metabolism and function remain unclear. We show that TLR signals that promote Treg proliferation increase Glut1, PI3K/Akt/mTORC1 signaling, and glycolysis. However, TLR-induced mTORC1 signaling also impaired Treg suppressive capacity. Conversely, FoxP3 opposed PI3K/Akt/mTOR signaling to reduce glycolysis and anabolic metabolism while increasing oxidative and catabolic metabolism. Importantly, Glut1 expression was sufficient to increase Treg numbers but reduced suppressive capacity and FoxP3 expression. Thus, inflammatory signals and FoxP3 balance mTORC1 signaling and glucose metabolism to control Treg proliferation and suppressive function.
Project description:Regulatory T (Treg) cells play an important role in the induction and maintenance of peripheral tolerance. Treg cells also suppress a variety of other immune responses, including anti-tumor and alloimmune responses. We have previously reported that tumor-activated Treg cells express granzyme B and that granzyme B is important for Treg cell-mediated suppression of anti-tumor immune responses (GSE13409). Here, we report that allogeneic mismatch also induces the expression of granzyme B. Granzyme B-deficient mice challenged with fully mismatched allogeneic P815 mastocytoma cells have markedly improved survival compared to WT and other granzyme- or perforin-deficient mice, suggesting an immunoregulatory role for granzyme B in this setting. Treg cells harvested from the tumor environment of P815-challenged mice express granzyme B. Treg cells also express granzyme B in vitro during mixed lymphocyte reactions and in vivo in a mouse model of graft-versus-host disease (GVHD). However, in contrast to findings from our previously published tumor model, granzyme B is not required for the suppression of effector T cell (Teff) proliferation in in vitro Treg suppression assays stimulated by either Concanavalin A or allogeneic antigen presenting cells. Additionally, in an ex vivo assay, sort-purified in vivo-activated CD4+Foxp3+ Treg cells from mice with active GVHD -- under conditions known to induce granzyme B expression in Treg cells -- suppressed Teff cell proliferation in a granzyme B-independent manner. Adoptive transfer of naive granzyme B-deficient CD4+CD25+ Treg cells into a mouse model of GVHD rescued hosts from lethatlity equivalently to naive wild-type Treg cells. Serum analysis of GVHD-associated cytokine production in these recipients also demonstrated that Treg cells suppressed production of IL-2, IL-4, IL-5, GM-CSF, and IFN-gamma in a granzyme B-independent manner. In order to determine whether the context in which Treg cells are activated alters the intrinsic properties of Treg cells, we used Foxp3 reporter mice to obtain gene expression profiles of CD4+Foxp3+ Treg cells purifed from naive resting spleens, spleens from mice with acute GVHD, and from ascites fluid of mice challenged intraperitoneally with allogeneic P815 tumor cells. Unsupervised analyses revealed distinct activation signatures of Treg cells among the 3 experimental groups. Taken together, these findings demonstrate that granzyme B is not required for Treg cell-mediated suppression of GVHD, which is in contrast to what we have previously reported for Treg cell function in the setting of tumor challenge. Cell intrinsic differences could partially account for these differential phenotypes. These data also suggest the therapeutic potential of targeting specific Treg cell suppressive functions in order to segregate GVHD and graft-versus-tumor effector functions. Experiment Overall Design: Six replicates of Naive CD4+Foxp3+ Treg cells were purified from resting spleens, five replicates of allogeneic tumor-activated Treg cells and three samples of GVHD-activated Treg cells. Experiment Overall Design: Naive reps 1-3 are controls for the GVHD-activated samples. Experiment Overall Design: Naive reps 4-6 are controls for the Allogeneic tumor-activated samples.
Project description:CD4+ cells from Foxp3.eGFP mice containing Foxp3- Teff and Foxp3+ Treg cells were treated with anti-CD3/CD28 monoclonal antibodies or soluble OX40L and JAG1 for 3 days to induce TCR-dependent vs TCR-independent Treg proliferation. Untreated fresh CD4+ T-cells used as control. Post treatment T-cell proliferation was confirmed by Cell Trace violet dilution and Foxp3+ (Treg) and Foxp3-(Teff) were sorted. Differential gene expression profiling between Tregs and Teff cells among control, anti-CD3/CD28 and OX40L-JAG1 treated cultured was performed using affymetrix mouse gene 2.0 ST micro array. We used microarrays to detail the global programme of gene expression underlying Treg proliferation and identified distinct classes of up-regulated genes during this process under different methods of expansion.
Project description:Foxp3+Tregcells are essential modulators of immune responses but under specific conditions can acquire inflammatory properties and potentially contribute to disease pathogenesis. Here we show that the transcription factor Blimp1 is a critical regulator of Foxp3+Treg functional plasticity. The intrinsic expression of Blimp1 was required to prevent Treg from producing Th17-associated cytokines and acquiring an inflammatory phenotype while preserving Foxp3 expression. Mechanistically, Blimp1 acts as a direct repressor of the Il17a/Il17f genes in Foxp3+Treg and binding of Blimp1 at this locus is associated with altered chromatin status, reduced binding the co-activator p300, unaltered binding of the Th17-asssociated transcription factor RORt and more abundant binding of IRF4, which was required for the production of IL17A in Blimp1-deficient Foxp3+Tregcells, as shown by IRF4 siRNA-mediated knockdown. Consistent with their capacity to produce inflammatory cytokines, Blimp1-deficient Foxp3+Treg exacerbate Th17-mediated inflammation in vivo indicating that Blimp1 is required to prevent Treg cells from acquiring pathogenic properties
Project description:To understand the differentiation of effector Tregs in more detail, we have performed transcriptional profiling of central Tregs and effector Tregs, based on Blimp1 expression. We performed RNA-sequencing of Foxp3+ regulatory T cells, comparing Blimp1/GFP+ and Blimp1/GFP- cells Three biologically independent samples for each condition were sequenced (condition 1: CD4+ CD25high Blimp1/GFP+; condition 2: CD4+ CD25high Blimp1/GFP-); cells were sorted from pooled spleens and lymphnodes of Blimp1/GFP reporter mice
Project description:MAP4K family kinases are key kinases for T-cell-mediated immune responses; however, in vivo roles of MAP4K2 in immune regulation remain unclear. Using T-cell-specific Map4k2 conditional knockout (T-Map4k2 cKO) mice, single-cell RNA sequencing (scRNA-seq), and mass spectrometry analysis, we found that MAP4K2 interacted with DDX39B, induced FOXP3 gene expression, and promoted Treg differentiation. Mechanistically, MAP4K2 directly phosphorylated the DEAD box protein DDX39B, leading to DDX39B nuclear translocation and subsequent Foxp3 RNA splicing. MAP4K2-induced FOXP3 mRNA levels were abolished in DDX39B knockout T cells. Furthermore, T-Map4k2 cKO mice displayed the reduction of Treg population and sustained inflammation during remission phase of EAE autoimmune disease model. Remarkably, the anti-PD-1 immunotherapeutic effect on pancreatic cancer was drastically improved in T-Map4k2 cKO mice, Treg-specific Map4k2-deficient mice, adaptively transferred mice, or MAP4K2-inhibitor-treated mice. Consistently, scRNA-seq analysis of human pancreatic patients showed increased MAP4K2 levels in infiltrating Treg cells. Collectively, MAP4K2 promotes Treg differentiation by inducing DDX39B nuclear translocation, leading to the attenuation of tumor immunity.
Project description:MAP4K family kinases are key kinases for T-cell-mediated immune responses; however, in vivo roles of MAP4K2 in immune regulation remain unclear. Using T- cell-specific Map4k2 conditional knockout (T-Map4k2 cKO) mice, single-cell RNA sequencing (scRNA-seq), and mass spectrometry analysis, we found that MAP4K2 interacted with DDX39B, induced FOXP3 gene expression, and promoted Treg differentiation. Mechanistically, MAP4K2 directly phosphorylated the DEAD box protein DDX39B, leading to DDX39B nuclear translocation and subsequent Foxp3 RNA splicing. MAP4K2-induced FOXP3 mRNA levels were abolished in DDX39B knockout T cells. Furthermore, T-Map4k2 cKO mice displayed the reduction of Treg population and sustained inflammation during remission phase of EAE autoimmune disease model. Remarkably, the anti-PD-1 immunotherapeutic effect on pancreatic cancer was drastically improved in T-Map4k2 cKO mice, Treg-specific Map4k2- deficient mice, or MAP4K2-inhibitor-treated mice. Consistently, scRNA-seq analysis of human pancreatic or lung cancer patients showed increased MAP4K2 levels in infiltrating Treg cells. Collectively, MAP4K2 promotes Treg differentiation by inducing DDX39B nuclear translocation, leading to the attenuation of tumor immunity.
Project description:In this study, we determined the signature of CD4+Foxp3- effector T cells and CD4+Foxp3+ Treg cells in naive animals and following LCMV WE infection. In addition, transcriptional signatures were determined in CXCR3+ CD4+Foxp3+ Treg cells arising in Th1 settings following LCMV infection.
Project description:Reprogramming autoreactive CD4⁺ effector T (Teff) cells into immunosuppressive regulatory T (Treg) cells represents a promising strategy for treating established autoimmune diseases. However, the stability and function of such reprogrammed Tregs under inflammatory conditions remain unclear. Here, we show that demethylation of core Treg identity genes in Teff cells yields lineage-stable Effector T cell Reprogrammed Tregs (ER-Tregs). A single adoptive transfer of ER-Tregs not only prevents autoimmune neuroinflammation in mice when given before disease onset but also arrests its progression when administered after onset. Compared to Foxp3‑overexpressing Teff cells, induced Tregs from naïve precursors, and endogenous Tregs, ER‑Tregs provide superior protection against autoimmune neuroinflammation. This enhanced efficacy stems from their inherited autoantigen specificity and selectively preserved effector‑cell transcriptional programs, which together bolster their fitness in inflammatory environments and enhance their suppressive capacity. Our results establish epigenetic reprogramming of autoreactive Teff cells as an effective approach to generate potent, stable Tregs for the treatment of refractory autoimmune conditions.