Project description:We established a bacteria infective intestinal inflammation in turbot (Scophthalmus maximus). And found that β-glucan could significantly alleviate the phenotype of turbot intestinal inflammation. We performed single cell transcriptome analysis to study bacteria infective intestinal inflammation and the effects of β-glucan. Furthermore, we revealed that β-glucan through activates Th17 cells to alleviate intestinal inflammation in turbot.
Project description:We establish a trained immunity activation model in turbot (Scophthalmus maximus) by training with β-glucan in vivo. Through single cell RNA-sequencing analysis, we annotate 16 clusters of immune cells and blood cells from head kidney and spleen, and successfully characterize that neutrophils exhibit distinguished feature of trained immunity.
Project description:To investigate the impact of pathogenic immune stimulation on the lipid droplet (LD) proteome of turbot (Scophthalmus maximus), turbot were intraperitoneally injected with PBS (XA01292LQ_P), wild-type Edwardsiella piscicida EIB202 (XA01292LQ_W), or inactivated E. piscicida EIB202 (XA01292LQ_T). Liver tissues were collected, and LDs were extracted for 4D label-free quantitative proteomics analysis.
Project description:Commensal microbiota contribute to gut homeostasis and influence mucosal gene expression. We harvested mucosal lining of middle and distal part of the small intestine and colon from germ-free (GF) and gnotobiotic mice monocolonized either with the E.coli strain O6K13 (O) or Nissle 1917 strain (N). The expression profiles of the mucosa samples were compared to the corresponding tissue isolated from conventionally reared mice in order to disclose genes differentially expressed in response to the change in the intestinal microflora composition.
Project description:With the aim of shedding light on the protection conferred by the DNA vaccines based in the G glycoprotein of viral haemorrhagic septicaemia virus (VHSV) in turbot (Scophthalmus maximus) we have used a specific microarray highly enriched in antiviral sequences to carry out the transcriptomic study associated to VHSV DNA vaccination/infection. The differential gene expression pattern in response to empty plasmid (pMCV1.4) and DNA vaccine (pMCV1.4-G860) intramuscular administration with regard to non-stimulated turbot was analyzed in head kidney at 8, 24 and 72 hours post-vaccination. Moreover, the effect of VHSV infection one month after immunization was also analyzed in vaccinated and non-vaccinated fish at the same time points.