Project description:The goal of this investigation was to establish proof of concept that nasal epithelium can be used as a proxy for the airway epithelium in studies of allergic asthma. We collected PBMCs, nasal epithelia, and bronchial epithelia from 12 subjects with allergic asthma and 12 control subjects without asthma, all non-Hispanic white nonsmoker adults. We conclude that genomic profiling of nasal epithelia captures most disease-relevant changes identified in airway epithelia but also provides additional targets that are most likely influenced by exposures. Thus, epigenetic marks in nasal epithelia may prove useful as a biomarker of disease severity and response to treatment or as a biosensor of the environment in asthma.
Project description:The goal of this investigation was to establish proof of concept that nasal epithelium can be used as a proxy for the airway epithelium in studies of allergic asthma. We collected PBMCs, nasal epithelia, and bronchial epithelia from 12 subjects with allergic asthma and 12 control subjects without asthma, all non-Hispanic white nonsmoker adults. We conclude that genomic profiling of nasal epithelia captures most disease-relevant changes identified in airway epithelia but also provides additional targets that are most likely influenced by exposures. Thus, epigenetic marks in nasal epithelia may prove useful as a biomarker of disease severity and response to treatment or as a biosensor of the environment in asthma.
Project description:Background: Nasal epithelia are emerging as a proxy measure of gene expression of the airway epithelium in asthma. We hypothesized that epigenetic marks regulate gene expression of the nasal epithelia and consequently may provide a novel target for allergic asthma. Methods: We compared genomic DNA methylation patterns and gene expression in African American children with persistent atopic asthma [N=36] versus healthy controls [N=36]. Results were validated in an independent population of asthmatics [N=30]. Results: We identified 186 genes with significant methylation changes, either as regions (differentially methylated regions [DMRs]) or single CpGs (differentially methylated probes [DMPs]) after adjustment for age, gender, race/ethnicity, batch effects, inflation, and multiple comparisons (false discovery rate-adjusted q<0.05). Genes differentially methylated include those with established roles in asthma and atopy, components of the extracellular matrix, genes related to immunity, cell adhesion, epigenetic regulation, and airway obstruction. The methylation changes are large (median 9.5%, range: 2.6-29.5% methylation change) and similar in magnitude to those observed in malignancies. Hypo- and hyper-methylated genes were associated with increased and decreased gene expression respectively (P<2.8x10-6 for DMRs and P<7.8x10-10 for DMPs). Quantitative analysis of methylation-expression relationships in 53 differentially expressed genes demonstrated that 32 (60%) have significant (q<0.05) methylation-expression relationships within 5kb of the gene. 10 loci selected based on the relevance to asthma, magnitude of methylation change, and asthma specific methylation-expression relationships were validated in an independent cohort of children with asthma. Conclusions: Our findings that epigenetic marks in respiratory epithelia are associated with allergic asthma in inner-city children provide new targets for biomarker development, and novel approaches to understanding disease pathogenesis. case control design with nasal epithelial cells from 36 atopic asthmatic and 36 nonatopic nonasthmatic children from the inner city
Project description:Background: Nasal epithelia are emerging as a proxy measure of gene expression of the airway epithelium in asthma. We hypothesized that epigenetic marks regulate gene expression of the nasal epithelia and consequently may provide a novel target for allergic asthma. Methods: We compared genomic DNA methylation patterns and gene expression in African American children with persistent atopic asthma [N=36] versus healthy controls [N=36]. Results were validated in an independent population of asthmatics [N=30]. Results: We identified 186 genes with significant methylation changes, either as regions (differentially methylated regions [DMRs]) or single CpGs (differentially methylated probes [DMPs]) after adjustment for age, gender, race/ethnicity, batch effects, inflation, and multiple comparisons (false discovery rate-adjusted q<0.05). Genes differentially methylated include those with established roles in asthma and atopy, components of the extracellular matrix, genes related to immunity, cell adhesion, epigenetic regulation, and airway obstruction. The methylation changes are large (median 9.5%, range: 2.6-29.5% methylation change) and similar in magnitude to those observed in malignancies. Hypo- and hyper-methylated genes were associated with increased and decreased gene expression respectively (P<2.8x10-6 for DMRs and P<7.8x10-10 for DMPs). Quantitative analysis of methylation-expression relationships in 53 differentially expressed genes demonstrated that 32 (60%) have significant (q<0.05) methylation-expression relationships within 5kb of the gene. 10 loci selected based on the relevance to asthma, magnitude of methylation change, and asthma specific methylation-expression relationships were validated in an independent cohort of children with asthma. Conclusions: Our findings that epigenetic marks in respiratory epithelia are associated with allergic asthma in inner-city children provide new targets for biomarker development, and novel approaches to understanding disease pathogenesis.
Project description:Analysis of nasal epithelial cells from adult patients with seasonal allergic rhinitis and from non allergic controls. Results provide insight into the molecular mechanisms associated with inflammatory responses in nasal mucosa. Total RNA was obtained from nasal epithelial cells of 7 seasonal allergic rhinitis patients and 5 non-allergic control subjects
Project description:Birch pollen is a significant cause of allergic rhinitis, yet the mechanisms of sensitization is to be understood completely. Here, we investigate the changes in gene expression of birch pollen allergic and non-allergic individuals that occur as a result of nasal provocation with birch pollen.
Project description:Analysis of nasal epithelial cells from adult patients with seasonal allergic rhinitis and from non allergic controls. Results provide insight into the molecular mechanisms associated with inflammatory responses in nasal mucosa.