Project description:In this report, we have developed a rapid oligonucleotide microarray detection technique to identify the most common ten Legionella spp.. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven air conditioner-condensed water samples with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed interestingly that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp..
Project description:We acquired the largest bacterial proteomic resource, covering 303 species, 119 genera, and five phyla. The proteome coverage is, on average, over 50%. Additionally, we acquired further datasets for bacterial identification algorithm validation: i) 303 species at a 30-minute gradient (38 samples per day throughput), ii) 303 species at a 10-minute gradient (80 samples per day throughput), iii) reproducibility dataset, iv) genus-specific Pseudomonas spp. dataset (94 Pseudomonas spp. strains), v) genus-specific Bacillus spp. dataset (28 Bacillus cereus s.l. strains), vi) food routine dataset (60 dairy product isolates), and vii) clinical routine dataset (570 clinical isolates).