Project description:To stratify hydrocortisone application in septic shock, we investigated an immune sub-study of the CORTICUS trial (Sprung et.al 2008, NEJM) employing machine learning to a panel of 120 parameters of 84 patients (n=24 non-survived, n=60 survived, 28 days) with special emphasis on potentially disadvantageous corticosteroids effects in the context of sepsis including clinical parameters, organ failure scores, lymphocyte counts and plasma protein concentrations of cytokines. We identified the ratio of IFNγ/IL10 in serum before randomization to serve as a valid biomarker for treatment stratification. This was validated with cytokine serum levels of patients (n=49) from the SISPCT study (Bloos et.al 2016, JAMA) and the early arm (n=20) of a hydrocortisone cross-over study (Keh et.al. 2003, Am J Respir Crit Care Med). Integrating these three studies, we yielded an odds ratio of 2.1 and a 95% confidence interval of 0.99-4.52 (P=0.03).In vitro assays revealed IFNγ/Il10 to reflect the burden or severity of systemic infection. Severity was evidencedbyserum levels of these cy-tokines in the patients with septic shock we observed, and also in patients with less severe sepsis. Elucidating the molecular regulation of leukocytes during treatment and placebo by a transcriptomics analysis pointed to induced recovery of immune cell function due to hydro-cortisone treatment, particularly in the predicted hydrocortisone responders. IFNγ/IL10 is a molecular marker with high potential for support of hydrocortisone therapy decision. IFNγ/IL10 is reasonable for this as it reflects the burden and recovery of the immune system which seems to be indicative for corticosteroids treatment of septic shock.
Project description:Large clinical trials testing hydrocortisone therapy in septic shock have produced conflicting results. Subgroups may benefit of hydrocortisone treatment depending on their individual immune response. We performed an exploratory analysis of the database from the international randomized controlled clinical trial Corticosteroid Therapy of Septic Shock (CORTICUS) employing machine learning to a panel of 137 variables collected from the Berlin subcohort comprising 83 patients including demographic and clinical measures, organ failure scores, leukocyte counts and levels of circulating cytokines. The identified theranostic marker was validated against data from a cohort of the Hellenic Sepsis Study Group (HSSG) (n = 246), patients enrolled in the clinical trial of Sodium Selenite and Procalcitonin Guided Antimicrobial Therapy in Severe Sepsis (SISPCT, n = 118), and another, smaller clinical trial (Crossover study, n = 20). In addition, in vitro blood culture experiments and in vivo experiments in mouse models were performed to assess biological plausibility. A low serum IFNγ/IL10 ratio predicted increased survival in the hydrocortisone group whereas a high ratio predicted better survival in the placebo group. Using this marker for a decision rule, we applied it to three validation sets and observed the same trend. Experimental studies in vitro revealed that IFNγ/IL10 was negatively associated with the load of (heat inactivated) pathogens in spiked human blood and in septic mouse models. Accordingly, an in silico analysis of published IFNγ and IL10 values in bacteremic and non-bacteremic patients with the Systemic Inflammatory Response Syndrome supported this association between the ratio and pathogen burden. We propose IFNγ/IL10 as a molecular marker supporting the decision to administer hydrocortisone to patients in septic shock. Prospective clinical studies are necessary and standard operating procedures need to be implemented, particularly to define a generic threshold. If confirmed, IFNγ/IL10 may become a suitable theranostic marker for an urging clinical need.
Project description:The cytokine IFNγ differentially impacts on tumors upon immune checkpoint blockade (ICB). Despite our understanding of downstream signaling events, less is known about 36 regulation of its receptor (IFNγ-R1). With an unbiased genome-wide CRISPR/Cas9 screen for critical regulators of IFNγ-R1 cell surface abundance, we identified STUB1 as an E3 ubiquitin ligase for IFNγ-R1 in complex with its signal-relaying kinase JAK1. STUB1 mediates ubiquitination-dependent proteasomal degradation of IFNγ-R1/JAK1 complex through IFNγ-R1K285 and JAK1K249. Conversely, STUB1 inactivation amplifies IFNγ signaling, sensitizing tumor cells to cytotoxic T cells in vitro. This was corroborated by an anticorrelation between STUB1 expression and IFNγ response in ICB-treated patients. Consistent with the context-dependent effects of IFNγ in vivo, anti-PD-1 response was increased in heterogenous tumors comprising both wildtype and STUB1-deficient cells but not full STUB1 knockout tumors. These results uncover STUB1 as a critical regulator of IFNγ-R1, and highlight the context-dependency of STUB1-regulated IFNγ signaling for ICB outcome.
Project description:chromatin accessibility (ATAC-seq) experiment. HeLa cells were primed with IFNγ for 24 hours, followed by IFNγ washout. After 48h, naïve and primed cells were induced by IFNγ for 1h and 3h. Cells were harvested at indicated time points and processed for ATAC-seq.
Project description:Here we perform QuantSeq 3' mRNA sequencing of RNA extracted from flow sorted splenic CD4+ Il10-eGFP+ or CD4+Il10eGFP- T cells from Tg4 Nr4a3-Tocky Il10-eGFP mice 24 hours after immunisation with 4 mg/kg of [4Y]-MBP. Our aim was to confirm the Tr1 cell phenotype within the Il10-eGFP+ T cell subset
Project description:Prenatal exposure to synthetic corticosteroids can significantly alter postnatal development through changes in neurotransmitters and their receptors, and thus having long-lasting behavioral effects. Some of these changes have been observed in animal experiments, others also in humans prenatally exposed to synthetic corticosteroids. Here, we focused on transcriptomic changes within the prefrontal cortex of female rats prenatally exposed to either betamethasone or saline. The transcriptome has been assessed by novel computational tools to determine complex changes that may have life-long effects on phenotype, i.e., behavior. We analyzed how composition, topology and modulatory networks of the genomic fabric of the dopaminergic, GABAergic, and glutamatergic synapse (the transcriptome of the most interconnected and stably expressed gene network responsible for specific transmission) are afected by the prenatal exposure to corticosteroids and postnatal ketamine-induced seizures. One sex (F) x two prenatal exposures (B = betamethasone, S = saline) x two postnatal treatments (K = ketamine, S = saline). Biological replicates: 4 FSS, 4 FBS, 4 FBK.
Project description:STAT1 and IRF1 transcription factor enrichment by CUT&RUN. HeLa cells were primed with IFNγ for 24 hours, followed with IFNγ washout. After 48h, naïve and primed cells were induced by IFNγ for 1h and 3h. Cells were harvested at indicated time points and processed for CUT&RUN
Project description:Despite its success, immune checkpoint blockade (ICB) cannot induce durable responses in most patients. This is partially attributed to reduced sensitivity to interferon gamma (IFNγ). Thus, elevating tumor IFNγ-receptor 1 (IFNγ-R1) expression to enhance IFNγ-mediated cytotoxicity is of clinical interest. Here, we demonstrate higher IFNγ-R1 expression to sensitize tumors to IFNγ-mediated killing. To unveil the largely undefined mechanisms of IFNγ-R1 expression, we performed a genome-wide CRISPR/Cas9 knockout screen for suppressors of IFNγ-R1 tumor cell surface abundance. We uncovered STUB1 as key mediator for proteasomally degrading IFNγ-R1/JAK1 complex. Conversely, STUB1 inactivation in tumor cells amplified IFNγ signaling and sensitized to cytotoxic T cells, but permitted IFNγ-induced PD-L1 expression. Rationally combining STUB1 inactivation with anti-PD-1 treatment effectively eliminated tumors in vivo. Clinically corroborating this is a STUB1 transcriptomic signature that associates with response to anti-PD-1 treatment in two patient cohorts. Thus, uncovering STUB1 as a pivotal regulator of IFNγ signaling and a synergistic target for anti-PD-1 treatment.