Project description:Contaminated aquifer (Dusseldorf-Flinger, Germany) templates extracted from 5 sediment depths ranging between 6.4 and 8.4 m below ground and over 3 years of sampling were amplified for amplicon pyrosequencing using the primers Ba27f (5’-aga gtt tga tcm tgg ctc ag-3’) and Ba519r (5’- tat tac cgc ggc kgc tg-3’), extended as amplicon fusion primers with respective primer A or B adapters, key sequence and multiplex identifiers (MID) as recommended by 454/Roche. Amplicons were purified and pooled as specified by the manufacturer. Emulsion PCR (emPCR), purification of DNA-enriched beads and sequencing run were performed following protocols and using a 2nd generation pyrosequencer (454 GS FLX Titanium, Roche) as recommended by the developer. Quality filtering of the pyrosequencing reads was performed using the automatic amplicon pipeline of the GS Run Processor (Roche), with a slight modification concerning the valley filter (vfScanAllFlows false instead of TiOnly) to extract the sequences. Demultiplexed raw reads were furhter trimmed for quality and lenght (>250 bp).
2012-11-11 | GSE25345 | GEO
Project description:Transcriptome sequencing of Three Begonia species, using Roche 454 Titanium pyrosequencing.
Project description:Characterization of gene expression levels with RNA-seq was performed on self-renewing (SR) and senescent (SEN) human adult adipose derived mesenchymal stem cells (hADSCs) using the Roche 454 pyrosequencing platform.
Project description:Analysis of RNA samples by massive parallel sequencing holds the promise to assay gene expression in both a quantitative and qualitative fashion and therefore allows for digital gene expression (DGE) profiling. We assessed the effect of different experimental approaches by generating small RNA libraries from a biological sample as well as an equimolar pool of synthetic miRNAs and analyzed the results using capillary dideoxy sequencing and next-generation sequencing platforms (Roche/454, AB/SOLiD and Illumina/Solexa). Whereas different sequencing platforms provided highly similar results, large differences in DGE profiles were observed depending on the library preparation method used. Nevertheless, our results indicate that the preferential nature of the library preparation methods is systematic and highly reproducible and we show that DGE is well suited for the quantification of relative expression differences between samples. Keywords: Transcriptome analysis