Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. Three groups of samples, A, B and C. Every group has 3 replicates.
Project description:Regulatory small RNAs (sRNAs) represent a major class of regulatory molecules that play large-scale and essential roles in many cellular processes across all domains of life. Microbial sRNAs have been primarily investigated in a few model organisms and little is known about the dynamics of sRNA synthesis in natural environments, and the roles of these short transcripts at the community level. Analyzing the metatranscriptome of a model extremophilic community inhabiting halite nodules (salt rocks) from the Atacama Desert, sampled over two years with different weather conditions, with SnapT – a new sRNA annotation pipeline – we discovered hundreds of intergenic (itsRNAs) and antisense (asRNAs) sRNAs expressed.
Project description:Mitochondrial composition varies by organ and their constituent cell types. This mitochondrial diversity likely determines variations in mitochondrial function. However, the heterogeneity of mitochondria in the brain remains underexplored despite the large diversity of cell types in neuronal tissue. Here, we used molecular systems biology tools to address whether mitochondrial composition varies by brain region and neuronal cell type. We reasoned that proteomics and transcriptomics of microdissected brain regions combined with analysis of single cell mRNA sequencing could reveal the extent of mitochondrial compositional diversity. We selected nuclear encoded gene products forming complexes of fixed stoichiometry, such as the respiratory chain complexes and the mitochondrial ribosome, as well as molecules likely to perform their function as monomers, such as the family of SLC25 transporters. We found that only the proteome encompassing these nuclear-encoded mitochondrial genes and obtained from microdissected brain tissue segregated the hippocampus, striatum, and cortex from each other. Nuclear-encoded mitochondrial transcripts could only segregate cell types and brain regions when the analysis was performed at the single cell level. In fact, single cell mitochondrial transcriptomes were able to distinguish glutamatergic and distinct types of GABAergic neurons from one another. Within these cell categories, unique SLC25A transporters were able to identify distinct cell subpopulations. Our results demonstrate heterogeneous mitochondrial composition across brain regions and cell types. We postulate that mitochondrial heterogeneity influences regional and cell type specific mechanisms in health and disease.
2022-02-17 | PXD026104 | Pride
Project description:The avian lung mycobiome: local environments predict community diversity and composition
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River.
2016-08-02 | GSE85064 | GEO
Project description:desert soil microbial community diversity
| PRJNA541106 | ENA
Project description:Local scale microbial community composition and function at an urban preserve in Austin, Tx
Project description:Samples of oil and production water were collected from five wells of the Qinghai Oilfield, China, and subjected to GeoChip hybridization experiments for microbial functional diversity profiling. Unexpectedly, a remarkable microbial diversity in oil samples, which was higher than that in the corresponding water samples, was observed, thus challenging previously believed assumptions about the microbial diversity in this ecosystem. Hierarchical clustering separated oil and water samples, thereby indicating distinct functional structures in the samples. Genes involved in the degradation of hydrocarbons, organic remediation, stress response, and carbon cycling were significantly abundant in crude oil, which is consistent with their important roles in residing in oil. Association analysis with environmental variables suggested that oil components comprising aromatic hydrocarbons, aliphatic hydrocarbons, and a polar fraction with nitrogen-, sulfur-, and oxygen-containing compounds were mainly influential on the structure of the microbial community. Furthermore, a comparison of microbial communities in oil samples indicated that the structures were depth/temperature-dependent. To our knowledge, this is the first thorough study to profile microbial functional diversity in crude oil samples. From the Qinghai Oilfield located in the Tibetan Plateau, northwest China, oil production mixtures were taken from four oil production wells (No. 813, 516, 48 and 27) and one injection well (No. 517) in the Yue-II block. The floating oil and water phases of the production mixtures were separated overnight by gravitational separation. Subsequently, the microbial community and the characteristics of the water solution (W813, W516, W48, and W27) and floating crude oil (O813, O516, O48, and O27) samples were analyzed. A similar analysis was performed with the injection water solution (W517).