Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of wildtype Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites.
Project description:Campylobacter jejuni is the most prevalent cause of foodborne bacterial enteritis worldwide. This study aims at the characterisation of pathomechanisms and signalling in Campylobacter-induced diarrhoea in the human mucosa. During routine colonoscopy, biopsies were taken from patients suffering from campylobacteriosis. RNA-seq of colon biopsies was performed to describe Campylobacter jejuni-mediated effects. Mucosal mRNA profiles of acutely infected patients and healthy controls were generated by deep sequencing using Illumina HiSeq 2500. This data provide the basis for subsequent upstream regulator analysis.
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of the fur perR mutant of Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites.
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of the fur perR mutant of Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites. Campylobacter jejuni NCTC 11168 fur perR mutant was grown to late log phase, RNA was purified and used for differential RNA-sequencing by 454 sequencing with barcoded libraries, and used for determination of genome-wide transcription start sites
Project description:Campylobacter jejuni is a common cause of diarrheal disease worldwide. Human infection typically occurs through the ingestion of contaminated poultry products. We previously demonstrated that an attenuated Escherichia coli live vaccine strain expressing the C. jejuni N-glycan on its surface reduces the Campylobacter load in more than 50% of vaccinated leghorn and broiler birds to undetectable levels (responder birds), whereas the remainder of the animals were still colonized (non-responders). To understand the underlying mechanism, we conducted 3 larger scale vaccination and challenge studies using 135 broiler birds and found a similar responder/non responder effect. The submitted data were used for a genome-wide association study of the chicken responses to glycoconjugate vaccination against Campylobacter jejuni.
Project description:Expression arrays comparing Campylobacter jejuni NCTC11168 during growth in the cecum of germ-free C57 BL/6 IL-10 knockout mice to C. jejuni NCTC11168 during growth in Bolton broth.
Project description:Campylobacter jejuni is a major zoonotic pathogen transmitted to humans via the food chain. C. jejuni is prevalent in chickens, a natural reservoir for this pathogenic organism. Due to the importance of macrolide antibiotics in clinical therapy of human campylobacteriosis, development of macrolide resistance in Campylobacter has become a concern for public health.To facilitate understanding the molecular basis associated with the fitness difference between Erys and Eryr Campylobacter, we compared the transcriptomes between ATCC 700819 and its isogenic Eryr transformant T.L.101 using DNA microarray.
Project description:Campylobacter jejuni is a human pathogen which causes campylobacteriosis, one of the most widespread zoonotic enteric diseases worldwide. Most cases of sporadic C. jejuni infection occur through the handling or consumption of undercooked chicken meat, or cross-contamination of other foods with raw poultry fluid. A common practice to combat Campylobacter infection is to treat chickens with chlorine which kills the microbe. This analysis aimed to elucidate the transcriptomic response of Campylobacter jejuni treated with hypochlorite through Illumina sequencing. C. jejuni was grown and treated with hypochlorite. Samples were taken 5, 20 and 45 min after treatment for RNAseq analysis.The data generated were compared to the transcriptome pre-exposure to determine C. jejuni's response to hypochlorite.
Project description:Transcriptional regulation mediates adaptation of pathogens to environmental stimuli and is important for host colonisation. The Campylobacter jejuni genome sequence reveals a surprisingly small set of regulators, mostly of unknown function, suggesting an intricate regulatory network. Interestingly, C. jejuni lacks the homologues of ubiquitous regulators involved in stress response found in many other Gram-negative bacteria. Nonetheless, cj1000 is predicted to code for the sole LysR-type regulator in the C. jejuni genome, and thus may be involved in major adaptation pathways. A cj1000 mutant strain was constructed and found to be attenuated in its ability to colonise 1-day old chicks. Complementation of cj1000 mutation restored the colonisation ability to that of wild type levels. The mutant strain was also outcompeted in a competitive colonisation assay of the piglet intestine. High resolution oxygraphy was carried out for the first time on C. jejuni and revealed a role for Cj1000 in controlling O2 consumption. Furthermore, microarray analysis of the cj1000 mutant revealed both direct and indirect regulatory targets, including genes involved in energy metabolism and oxidative stress defences. These results highlight the importance of Cj1000 regulation in host colonisation and in major physiological pathways.