Project description:Investigation of global gene expression changes in Saccharomyces cerevisiae strain NRRL Y-12632 (ATCC® 18824) grown in media made with asbestos mine tailings-laden water compared to the control grown in media made with double distilled water
Project description:To investigate the effect of different levels of compost treatment on root gene expression of Atriplex lentiformis, we set up a greenhouse experiment with three treatments of 10% (TC10), 15 (TC15), and 20% (TC20) compost amended, metalliferrous mine tailings. Plants were harvested at ~11 weeks and root samples were flash frozen in liquid nitrogen for RNA-seq analysis. We then performed gene expression profiling analysis using data obtained from RNA-seq of 9 root samples from 3 different treatments.
Project description:To study whether and how soil nitrogen conditions affect the ecological effects of long-term elevated CO2 on microbial community and soil ecoprocess, here we investigated soil microbial community in a grassland ecosystem subjected to ambient CO2 (aCO2, 368 ppm), elevated CO2 (eCO2, 560 ppm), ambient nitrogen deposition (aN) or elevated nitrogen deposition (eN) treatments for a decade. Under the aN condition, a majority of microbial function genes, as measured by GeoChip 4.0, were increased in relative abundance or remained unchanged by eCO2. Under the eN condition, most of functional genes associated with carbon, nitrogen and sulfur cycling, energy processes, organic remediation and stress responses were decreased or remained unchanged by eCO2, while genes associated with antibiotics and metal resistance were increased. The eCO2 effects on fungi and archaea were largely similar under both nitrogen conditions, but differed substantially for bacteria. Coupling of microbial carbon or nitrogen cycling genes, represented by positive percentage and density of gene interaction in association networks, was higher under the aN condition. In accordance, changes of soil CO2 flux, net N mineralization, ammonification and nitrification was higher under the aN condition. Collectively, these results demonstrated that eCO2 effects are contingent on nitrogen conditions, underscoring the difficulty toward predictive modeling of soil ecosystem and ecoprocesses under future climate scenarios and necessitating more detailed studies.
Project description:To study whether and how soil nitrogen conditions affect the ecological effects of long-term elevated CO2 on microbial community and soil ecoprocess, here we investigated soil microbial community in a grassland ecosystem subjected to ambient CO2 (aCO2, 368 ppm), elevated CO2 (eCO2, 560 ppm), ambient nitrogen deposition (aN) or elevated nitrogen deposition (eN) treatments for a decade. Under the aN condition, a majority of microbial function genes, as measured by GeoChip 4.0, were increased in relative abundance or remained unchanged by eCO2. Under the eN condition, most of functional genes associated with carbon, nitrogen and sulfur cycling, energy processes, organic remediation and stress responses were decreased or remained unchanged by eCO2, while genes associated with antibiotics and metal resistance were increased. The eCO2 effects on fungi and archaea were largely similar under both nitrogen conditions, but differed substantially for bacteria. Coupling of microbial carbon or nitrogen cycling genes, represented by positive percentage and density of gene interaction in association networks, was higher under the aN condition. In accordance, changes of soil CO2 flux, net N mineralization, ammonification and nitrification was higher under the aN condition. Collectively, these results demonstrated that eCO2 effects are contingent on nitrogen conditions, underscoring the difficulty toward predictive modeling of soil ecosystem and ecoprocesses under future climate scenarios and necessitating more detailed studies. Fourty eight samples were collected for four different carbon and nitrogen treatment levels (aCaN,eCaN,aCeN and eCeN) ; Twelve replicates in every elevation
Project description:This work aims to study wether the increment of the atmospheric carbon dioxide (CO2) concentration, in the context of climate change, will potentially allow plants to better face ammonium nutrition. Tomato (Solanum lycopersicum L.) plants were grown for 4 week with 15 mM of nitrogen, supplied as nitrate or ammonium, in conditions of ambient (aCO2, 400 ppm) or elevated CO2 (eCO2, 800 ppm) atmosphere. Transcription profiling by array was carried out in leavesfor the four growth conditions assayed and gene expression comparisons were done between N sources and CO2 conditions: i) genes differentially expressed in response to the atmospheric CO2 concentration (eCO2 vs aCO2) under nitrate or ammonium nutrition; ii) genes differentially expressed in response to the N source (ammonium vs nitrate) at aCO2 or eCO2. 3 biological replicates for each growth condition were analysed.
Project description:Elevated CO2 (eCO2) has an influence on developing leaf growth of rice (Oryza sativa cv. Nipponbare), specifically lower growth stage than P4 (plastochron number), resulting in decrease in leaf size compared with that in ambient CO2 (aCO2). Since several micro RNAs are associated with the regulation of plant leaf development, in order to clarify which micro RNAs are involved in the decrease of leaf blade size at eCO2, we carried out high-throughput small RNA sequencing analysis and compared the amount of identified miRNAs in developing rice leaf blade grown between aCO2 and eCO2 condition.