Project description:To identify genes regulated by miR-328-3p, we transfected miR-328-3p mimics in ovarian cancer cell line OV2008, and compared the gene expression profiles between miR-328-3p mimics transfected and Negative Control miRNA-transfected cells.
Project description:Oxaliplatin (oxPt) resistance in colorectal cancers (CRC) is a major unsolved problem. Consequently, predictive markers and a better understanding of resistance mechanisms are urgently needed. To investigate if the recently identified predictive miR-625-3p is functionally involved in oxPt resistance, stable and inducible models of miR-625-3p dysregulation were analyzed. Ectopic expression of miR-625-3p in CRC cells led to increased resistance towards oxPt. The mitogen-activated protein kinase (MAPK) kinase 6 (MAP2K6/MKK6) – an activator of p38 MAPK - was identified as a functional target of miR-625-3p, and, in agreement, was down-regulated in patients not responding to oxPt therapy. The miR-625-3p resistance phenotype could be reversed by anti-miR-625-3p treatment and by ectopic expression of a miR-625-3p insensitive MAP2K6 variant. Transcriptome, proteome and phosphoproteome profiles revealed inactivation of MAP2K6-p38 signaling as a possible driving force behind oxPt resistance. We conclude that miR-625-3p induces oxPt resistance by abrogating MAP2K6-p38 regulated apoptosis and cell cycle control networks.
Project description:miR-493-5p, miR-3662, and miR-589-3p were estimated as working microRNAs in bleomycin- and methotrexate-induced phenotypic changes in A549 cells via microRNAs-Proteins Analysis of Integrative Relationship (miR-PAIR). To verify the effect of these miRNAs on the their target protein expression levels, comprehensive expression of proteins in A549 cells treated with miR-493-59, miR-3662, and miR-589-3p mimic was examined by SWATH-MS method. As expected by a miR-PAIR mehtod, almost target proteins were succesfully regulated by miR-493-5p and miR-589-3p mimics.
Project description:This is a prospective-retrospective study to determine if the expression of the miRNA’s miR-31-3p and miR-31-5p are prognostic of patient outcomes or predictive of the benefit from anti-EGFR therapy in stage III Colon Cancer. The present study will utilize FFPE tumor samples collected from patients enrolled in the PETACC-8 study conducted by the Fédération Francophone de Cancérologie Digestive (FFCD). This phase 3 clinical trial prospectively randomized fully resected stage III colon cancer patients to receive adjuvant treatment with either FOLFOX-4 plus cetuximab or FLOFOX-4 alone.
Project description:Oxaliplatin (oxPt) resistance in colorectal cancers (CRC) is a major unsolved problem. Consequently, predictive markers and a better understanding of resistance mechanisms are urgently needed. To investigate if the recently identified predictive miR-625-3p is functionally involved in oxPt resistance, stable and inducible models of miR-625-3p dysregulation were analyzed. Ectopic expression of miR-625-3p in CRC cells led to increased resistance towards oxPt. The mitogen-activated protein kinase (MAPK) kinase 6 (MAP2K6/MKK6) – an activator of p38 MAPK - was identified as a functional target of miR-625-3p, and, in agreement, was down-regulated in patients not responding to oxPt therapy. The miR-625-3p resistance phenotype could be reversed by anti-miR-625-3p treatment and by ectopic expression of a miR-625-3p insensitive MAP2K6 variant. Transcriptome, proteome and phosphoproteome profiles revealed inactivation of MAP2K6-p38 signaling as a possible driving force behind oxPt resistance. We conclude that miR-625-3p induces oxPt resistance by abrogating MAP2K6-p38 regulated apoptosis and cell cycle control networks. Experimental design for mass spectrometry SILAC experiments can be found at https://figshare.com/s/8e79f008e0e58ec6efc2 or https://doi.org/10.6084/m9.figshare.4888139
Project description:To identify the direct target of miR-490-3p, we used whole genome microarray expression profiling to screen for genes potentially regulated by the microRNA. AGS cells were transfected with control mimics or miR-490-3p mimics and gene expression was determined 72 hours after transfection.
Project description:Overexpression of miR-127-3p in LN229 glioblastoma cells promotes their migration and invasion in vitro and in vivo in xenograft models. We used microarrays to detail the global programme of gene expression in miR-127-3p overexpression LN229 cells compared with mock overexpression LN229 cells MiR-127-3p overexpression LN229 cells and and mock overexpression LN229 cells were cultured in DMEM cell culture media for RNA extraction and hybridization on Affymetrix microarrays. We sought to obtain the genes regulated by miR-127-3p in glioblastoma cell lines.
Project description:To identify the direct target of miR-490-3p, we used whole genome microarray expression profiling to screen for genes potentially regulated by the microRNA.
Project description:We report the application of transcriptome sequencing for investigating of the hsa-miR-371a-5p and hsa-miR-518a-3p regulated genes. JAR, JEG-3 and BeWo choriocarcinoma cells were transfected with hsa-miR-371a-5p or hsa-miR-518a-3p inhibitors or control inhibitors. Totally, 237, 132 and 277 genes with > 2 folds change and adjusted P < 0.05 were upregulated in JAR, JEG-3 and BeWo cells respectively after hsa-miR-371a-5p knockdown. Meanwhile, 229, 269 and 191 genes were upregulated in JAR, JEG-3 and BeWo cells respectively after hsa-miR-518a-3p knockdown. The top upregulated genes included many oncogenes or oncogenesis associated ones. Enrichment analysis showed hsa-miR-371a-5p and hsa-miR-518a-3p regulated diverse pathways related to tumorigenesis and metastasis. Our results would be helpful for the searching of early molecular biomarkers and therapeutic targets for gestational trophoblastic neoplasia.
Project description:Long non-coding RNAs (lncRNAs) play pivotal roles in diseases such as osteoarthritis (OA). However, knowledge of the biological roles of lncRNAs is limited in OA. We aimed to explore the biological function and molecular mechanism of HOTTIP in chondrogenesis and cartilage degradation. We used the human mesenchymal stem cell (MSC) model of chondrogenesis, in parallel with, tissue biopsies from normal and OA cartilage to detect HOTTIP, CCL3, and miR-455-3p expression in vitro. Biological interactions between HOTTIP and miR-455-3p were determined by RNA silencing and overexpression in vitro. We evaluated the effect of HOTTIP on chondrogenesis and degeneration, and its regulation of miR-455-3p via competing endogenous RNA (ceRNA). Our in vitro ceRNA findings were further confirmed within animal models in vivo. Mechanisms of ceRNAs were determined by bioinformatic analysis, a luciferase reporter system, RNA pull-down, and RNA immunoprecipitation (RIP) assays. We found reduced miR-455-3p expression and significantly upregulated lncRNA HOTTIP and CCL3 expression in OA cartilage tissues and chondrocytes. The expression of HOTTIP and CCL3 was increased in chondrocytes treated with interleukin-1β (IL-1β) in vitro. Knockdown of HOTTIP promoted cartilage-specific gene expression and suppressed CCL3. Conversely, HOTTIP overexpression reduced cartilage-specific genes and increased CCL3. Notably, HOTTIP negatively regulated miR-455-3p and increased CCL3 levels in human primary chondrocytes. Mechanistic investigations indicated that HOTTIP functioned as ceRNA for miR-455-3p enhanced CCL3 expression. Taken together, the ceRNA regulatory network of HOTTIP/miR-455-3p/CCL3 plays a critical role in OA pathogenesis and suggests HOTTIP is a potential target in OA therapy.