Project description:Sacha Inchi (Plukenetia volubilis) oil press-cake (SIPC) represents a new source of proteins of high biological value, with promissory food applications. However, knowledge of these proteins remains limited. In this study, a Sacha Inchi protein concentrate (SPC) was extracted from the SIPC, and proteomic analysis was performed to identify the major alkaline-soluble proteins. Electrophoretic profiles highlighted the efficacy of conditions to extract the major proteins, from which five proteins, not previously reported, were registered. LC-MS/MS analyses produced abundant high-quality fragmentation spectra. Utilizing the Euphorbiaceae database (DB), 226 proteins were identified, with numerous well-assigned spectra remaining unidentified. The PEAKS Studio software generated high quality de novo peptides. Gene ontology (GO) classification allowed the identification of sequenced proteins associated with biological processes, molecular functions, and cellular components. The main alkali-soluble proteins from SPC were characterized by the derived functional analysis like seed storage, defense-related, and carbohydrate and lipid metabolism-related proteins. These results contribute to the information of the emerging proteomic studies on Sacha Inchi.
Project description:Dietary ω-3 polyunsaturated fatty acids (PUFAs) are beneficial for humans against the development of hyperlipidaemia, but the underlying mechanisms are still poorly understood. Here, we demonstrated that oral consumption of sacha inchi oil, which is rich in α-linolenic acid, alleviated dyslipidemia, hepatic steatosis and inflammatory infiltration in high-fat diet (HFD)-fed rats. Sacha inchi oil administration reversed gut microbiota dysbiosis and altered the gut microbiota metabolome and in particular prevented bile acid dysmetabolism caused by a HFD. Sacha inchi oil intake ameliorated hepatic lipid dysmetabolism in HFD-fed rats, via potentiating the biosynthesis and reuptake of bile acids, reducing the de novo lipogenesis, promoting fatty acid beta-oxidation, and alleviating the dysregulation of glycerolipid, glycerophospholipid, and sphingolipid metabolisms. The results showed that dietary sacha inchi oil can alleviate gut microbiota dysbiosis and reduce lipid dysmetabolism in HFD rats, and provide novel insights into the molecular mechanisms by which plant-derived ω-3 PUFAs prevent the development of hyperlipidaemia.
Project description:Genome Resource for Fusarium oxysporum Strain FoPvo1 Causing Root and Basal Stem Rot in the Woody Oilseed Crop Sacha Inchi (Plukenetia volubilis L.)