Project description:Many crop species have complex genomes, making the conventional pathway to associating molecular markers with trait variation, which includes genome sequencing, both expensive and time-consuming. We used a streamlined approach to rapidly develop a genomics platform for hexaploid wheat based on the inferred order of expressed sequences. This involved assembly of the transcriptomes for the progenitor genomes of bread wheat, the development of a genetic linkage map comprising 9495 mapped transcriptome-based SNP markers, use of this map to rearrange the genome sequence of Brachypodium distachyon into pseudomolecules representative of the genome organization of wheat and sequence similarity-based mapping onto this resource of the transcriptome assemblies. To demonstrate that this approximation of gene order in wheat is appropriate to underpin association genetics analysis, we undertook Associative Transcriptomics for straw biomass traits, identifying associations and even candidate genes for height, weight and width.
Project description:Bread wheat is the major staple food of the world with a complex hexaploidy genome. The precise spatiotemporal gene expression is orchestrated by enhancers, which lack general sequence features and thus are difficult to be located, especially in large genomes. Epigenomic architecture, including chromatin openness and active chromatin marks, has been widely used to characterize enhancers. However, an active chromatin environment does not necessarily mean an active enhancer. Recently, enhancer RNAs (eRNAs), the hallmark for active enhancers, have been detected by nascent RNA sequencing in both Drosophila and mammalian. In order to answer whether plant enhancers could be transcribed, we investigated the transcriptome of bread wheat via two nascent RNA sequencing methods, GRO-seq and pNET-seq combining with epigenome profiling. Our study demonstrates the presence and wide distribution of transcription at intergenic enhancers, which accurately reflects high enhancer activity, shedding light on the complex gene expression regulation across subgenomes in bread wheat.
2022-04-06 | GSE178276 | GEO
Project description:Gram negative bacilli Genome sequencing and assembly
Project description:A common bacterial strategy for monitoring environmental challenges is to use two-component systems, which consist of a sensor histidine kinase (HK) and a response regulator (RR). In the food-borne pathogen Bacillus cereus, the alternative sigma factor σB is activated by the RR RsbY. Here we present strong indications that the PP2C-type phosphatase RsbY receives its input from the multi-sensor hybrid kinase BC1008 (renamed RsbK). Genome analyses revealed that, across bacilli, rsbY and rsbK are located in a conserved gene cluster. A B. cereus rsbK deletion strain was shown to be incapable of inducing σB upon stress conditions and was impaired in its heat adaptive response. Comparison of the wild-type and rsbK mutant transcriptomes upon heat shock revealed that RsbK was primarily involved in the activation of the σB-mediated stress response. Truncation of the RsbK RR receiver domain demonstrated the importance of this domain for σB induction upon stress. The domain architecture of RsbK suggests that in the B. cereus group and in other bacilli, environmental and intracellular stress signalling routes are combined into one single protein. This strategy is markedly different from the σB activation pathway in other low-GC Grampositives.
Project description:Bread wheat is allohexaploid with 16 Gb genome, which has large intergenic region with abundant TEs and regulatory sequences . Our results give insight into the connections between chromatin modifications and transcriptional regulatory activity and provide the first systematic epigenomic map for functional annotation of the allohexaploid wheat genome.
2019-06-21 | GSE121903 | GEO
Project description:meat spoilage bacteria Genome sequencing and assembly