Project description:Cytosine base modifications 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) are present in mammalian DNA. Here, reduced bisulfite sequencing is developed for quantitatively sequencing 5fC at single-base resolution. This method is then applied with oxidative bisulfite sequencing to gain a map of 5mC, 5hmC and 5fC in mouse embryonic stem cells. 12 samples, reduced representation bisulphite treatment: 4 replicates each for bisulphite (BS), oxidative BS (oxBS) and reduced BS (redBS) for the detection of 5mC, 5hmC and 5fC. Mouse (strain B6C) embryonic stem cells.
Project description:We analyzed the genome-wide binding of Sox2 and POU factor partner factors, Oct4 in ESCs (using published datasets PMID:18692474 and GSM307137, GSM307154, GSM307155) and Brn2 in NPCs. We found that Sox2 and Oct4 co-occupied a large subset of promoters and enhancers in ESCs, but that Sox2 and Brn2 co-occupy predominantly enhancers. Further, we overexpressed Brn2 in differentiating ESCs and showed that ectopic Brn2 recruited Sox2 to NPC-specific targets, resulting in skewed differentiation towards the neural lineage. Examination of transcription factor binding in ESCs, NPCs, and differentiating ESCs by ChIP-Seq.
Project description:Estrogen receptor beta (ERβ) is a ligand inducible transcription factor regulating gene expression in response to the female sex hormone estrogen. Previously, we found that ERβ deficiency results in changes in DNA methylation patterns at two gene promoters, implicating an involvement of ERβ in DNA methylation. In this study, we set out to explore this involvement on a genome-wide level, and to investigate the underlying mechanisms of this function. Using reduced representation bisulfite sequencing (RRBS), we compared genome-wide DNA methylation in mouse embryonic fibroblasts (MEFs) derived from wildtype (wt) and ERβ knock-out (βerko) mice, and identified around 8000 differentially methylated positions (DMPs). This suggests that ERβ is involved in regulating DNA methylation at specific sites in the genome. Genome-wide DNA methylation was analysed in MEFs derived from wildtype and ERbeta null mice by educed representation bisulfite sequencing (RRBS) on an Illumina Genome Analyser IIx platform.
Project description:Genome wide analysis revealed that distal regulatory elements form Low Methylated Regions (LMRs). Even though transcription factor binding is required for LMR formation, we show for the test case CTCF that actual occupancy does not distinguish DNA methylation states. However, in line with a dynamic model of binding and DNA methylation turnover, we find that the product of active demethylation, 5-hydroxymethylcytosine (5hmC), is enriched at LMRs. 5hmC is present at active regulatory regions in stem and somatic cells and as a result a substantial fraction of changes in 5hmC occurs at LMRs. This suggests that transcription factor binding mediates active turnover of DNA methylation as an integral part of reprogramming of regulatory regions. CTCF ChIP bisulfite sequencing in mouse embryonic stem cells and whole genome shotgun bisulfite sequencing of RESTko mouse embryonic stem (ES) cells
Project description:FOXO transcription factors are central regulators of longevity from worms to humans. FOXO3 – the FOXO isoform associated with exceptional human longevity – preserves adult neural stem cell pools. Here we identify FOXO3 direct targets genome-wide in primary cultures of adult neural progenitor cells (NPCs). Interestingly, FOXO3-bound sites are enriched for motifs for bHLH transcription factors and FOXO3 shares common targets with the pro-neuronal bHLH transcription factor ASCL1/MASH1 in NPCs. Analysis of the chromatin landscape reveals that FOXO3 and ASCL1 are particularly enriched at the enhancers of genes involved in neurogenic pathways. Intriguingly, FOXO3 inhibits ASCL1-dependent neurogenesis in NPCs and direct neuronal conversion in fibroblasts. FOXO3 also restrains neurogenesis in vivo. Our study identifies a genome-wide interaction between the pro-longevity transcription factor FOXO3 and the cell fate determinant ASCL1, and raises the possibility that FOXO3’s ability to restrain ASCL1-dependent neurogenesis may help preserve the neural stem cell pool. ChIP-seq profiles of two transcription factors (FOXO3 and ASCL1) and three histone marks (H3K4me1, H3K4me3 and H3K27me3) in adult mouse neural progenitor cells.
Project description:Cytosine methylation of DNA CpG dinucleotides in gene promoters is an epigenetic modification that regulates gene transcription. While many methods exist to interrogate methylation states, no current methods offer large-scale, targeted, single CpG resolution. We report an approach combining bisulfite treatment followed by RainDance microdroplet PCR with next-generation sequencing to assay the methylation state of 50 genes in the regions 1 kb upstream and downstream of their transcription start sites. Wildtype and hypermethylated Jurkat DNA (New Englad Biolabs) was treated with bisulfite to convert all unmethylated cytosines to uracil. Following bisulfite treatment, targeted amplification was carried out using a custom primer library and microdroplet PCR. PCR product was sheared to 200 bp and ligated to sequencing adapters following standard protocols. Sequencing was conducted with single-end 100 bp reads on an Illumina GAIIx for wild type Jurkat DNA or Jurkat CpG DNA with a single sample per lane.
Project description:During development of the mammalian central nervous system (CNS), neurons and glial cells (astrocytes and oligodendrocytes) are generated from common neural precursor cells (NPCs). However, neurogenesis precedes gliogenesis, which normally commences at later stages of fetal telencephalic development. Astrocyte differentiation of mouse NPCs at embryonic day (E) 14.5 (relatively late gestation) is induced by activation of the transcription factor STAT3, whereas at E11.5 (mid-gestation) NPCs do not differentiate into astrocytes even when stimulated by STAT3-activating cytokines such as leukemia inhibitory factor (LIF). This can be explained in part by the fact that astrocyte-specific gene promoters are highly methylated in NPCs at E11.5, but other mechanisms are also likely to play a role. We therefore sought to identify genes involved in the inhibition of astrocyte differentiation of NPCs at midgestation. We first examined gene expression profiles in E11.5 and E14.5 NPCs, using Affymetrix GeneChip analysis, applying the Percellome method to normalize gene expression level. We then conducted in situ hybridization analysis for selected genes found to be highly expressed in NPCs at midgestation. Among these genes, we found that N-myc and high mobility group AT-hook 2 (Hmga2) were highly expressed in the E11.5 but not the E14.5 ventricular zone of mouse brain, where NPCs reside. Transduction of N-myc and Hmga2 by retroviruses into E14.5 NPCs, which normally differentiate into astrocytes in response to LIF, resulted in suppression of astrocyte differentiation. However, sustained expression of N-myc and Hmga2 in E11.5 NPCs failed to maintain the hypermethylated status of an astrocyte-specific gene promoter. Taken together, our data suggest that astrocyte differentiation of NPCs is regulated not only by DNA methylation but also by genes whose expression is controlled spatio-temporally during brain development. Experiment Overall Design: Neuroepithelial cells(NPCs) were prepared from telencephalons of E11.5 and E14.5 mice and cultured in N2-supplemented Dulbecco's Modified Eagle's Medium with F12 (GIBCO) containing 10 ng/ml basic FGF (R&D Systems) (N2/DMEM/F12/bFGF) on culture dishes (Nunc) or chamber slide (Nunc) which had been precoated with poly-L-ornithine (Sigma) and fibronectin (Sigma). E11.5 NPCs were cultured for one day and E14.5 NPCs were for four days.
Project description:This study aims to investigate the DNA methylation patterns at transcription factor binding regions and their evolutionary conservation with respect to binding activity divergence. We combined newly generated bisulfite-sequencing experiments in livers of five mammals (human, macaque, mouse, rat and dog) and matched publicly available ChIP-sequencing data for five transcription factors (CEBPA, HNF4a, CTCF, ONECUT1 and FOXA1). To study the chromatin contexts of TF binding subjected to distinct evolutionary pressures, we integrated publicly available active promoter, active enhancer and primed enhancer calls determined by profiling genome wide patterns of H3K27ac, H3K4me3 and H3K4me1.
Project description:DNA methylation is catalysed by DNA methyltransferases (DNMTs) and is necessary for a correct embryonic development. On the other hand, the DNA demethylation is mediated by the Ten Eleven Translocation (Tet) proteins through oxidation of 5-methyl cytosine (5mC) to 5-hydroxyl (5hmC), 5-formyl (5fC) and 5-carboxyl (5caC) cytosine, and by the Thymine-DNA glycosylase (TDG) that excises the 5fC and 5caC. In embryonic stem cells (ESCs), gene promoters are maintained in an hypomethylated state, but the dynamics of this phenomenon still remains unknown. Here we present a genome-wide approach, named methylation-assisted bisulfite sequencing (MAB-Seq) that enables single-base resolution mapping of 5fC and 5caC and measuring of their relative abundance. Application of this method to mouse ESCs exposed the presence of 5fcaC residues on the hypomethylated promoters of the expressed genes, revealing an active DNA demethylation mechanism since the loss of TDG leads to an increase of 5fC/5caC. We also show that TDG is actually bound on these regions and that co-localizes and interacts with Tet1. We moreover demonstrate, by reduced representation of bisulfite sequencing (RRBS), that active promoters are actually demethylated by a Tet-dependent mechanism and that Dnmt1 and Dnmt3a are responsible of this DNA methylation. Our work shows the whole-genome map of 5fC and 5caC at single base resolution in ESCs, it demonstrates in detail the DNA methylation dynamics occurring on expressed gene promoters and identifies the key players of this mechanism. Furthermore, we provide a new tool (MAB-Seq) that can be broadly used in all biological contexts for epigenetics study involving identification and quantification of 5fC and 5caC at single base resolution. Methylation-assisted bisulfite sequencing (MAB-Seq) of E14 embryonic stem cells (ESCs), Biotag ChIP-Seq of Tdg and Reduced representation Bisulfite Sequencing (RRBS) in E14 ESCs.
Project description:DNA methylation is catalysed by DNA methyltransferases (DNMTs) and is necessary for a correct embryonic development. On the other hand, the DNA demethylation is mediated by the Ten Eleven Translocation (Tet) proteins through oxidation of 5-methyl cytosine (5mC) to 5-hydroxyl (5hmC), 5-formyl (5fC) and 5-carboxyl (5caC) cytosine, and by the Thymine-DNA glycosylase (TDG) that excises the 5fC and 5caC. In embryonic stem cells (ESCs), gene promoters are maintained in an hypomethylated state, but the dynamics of this phenomenon still remains unknown. Here we present a genome-wide approach, named methylation-assisted bisulfite sequencing (MAB-Seq) that enables single-base resolution mapping of 5fC and 5caC and measuring of their relative abundance. Application of this method to mouse ESCs exposed the presence of 5fcaC residues on the hypomethylated promoters of the expressed genes, revealing an active DNA demethylation mechanism since the loss of TDG leads to an increase of 5fC/5caC. We also show that TDG is actually bound on these regions and that co-localizes and interacts with Tet1. We moreover demonstrate, by reduced representation of bisulfite sequencing (RRBS), that active promoters are actually demethylated by a Tet-dependent mechanism and that Dnmt1 and Dnmt3a are responsible of this DNA methylation. Our work shows the whole-genome map of 5fC and 5caC at single base resolution in ESCs, it demonstrates in detail the DNA methylation dynamics occurring on expressed gene promoters and identifies the key players of this mechanism. Furthermore, we provide a new tool (MAB-Seq) that can be broadly used in all biological contexts for epigenetics study involving identification and quantification of 5fC and 5caC at single base resolution. Methylation-assisted bisulfite sequencing (MAB-Seq) of E14 embryonic stem cells (ESCs), Biotag ChIP-Seq of Tdg and Reduced representation Bisulfite Sequencing (RRBS) in E14 ESCs.