Project description:The study critically evaluate the results of 16S targeted amplicon sequencing performed on the total DNA collected from healthy donors’ blood samples in the light of specific negative controls.
Project description:Purpose: This study aims to compare and analyze the differences in bacterial community composition in fecal samples from mice treated with Control(DW), Vancomycin (VAN), Ampicillin (AMP), Neomycin (NEO), Metronidazole (MET), and a combination of all antibiotics (ALL, VANM) using 16S rRNA sequencing. Methods: Each antibiotics treated mice's fecal samples were collected and stored -80'c until analyzation. DNA was extracted using the NucleoSpin DNA Stool Kit (MACHEREY-NAGEL) following the manufacturer’s protocol. Metagenomic sequencing was performed on an Illumina MiSeq platform (Illumina), targeting the V3 and V4 regions of the 16S rRNA gene according to the manufacturer's instructions. PCR products were purified using AMPure XP beads, and sequencing adapters were added using the Nextera XT Index Kit (Illumina). The library was further purified with AMPure XP beads and quantified using automated electrophoresis with the TapeStation System (Agilent). Sequencing was performed using the MiSeq v3 reagent kit (Illumina), following the manufacturer’s protocol. Results: QIIME2 (v2023.02) was used to process and analyze 16S rRNA gene amplicon sequencing data, from sequence preprocessing to taxonomic classification. Paired-end sequences were merged and quality-filtered using Deblur. The resulting amplicon sequence variants (ASVs) were used for downstream analyses. Conclusions: Our study presents a comparative analysis of bacterial community composition in fecal samples from antibiotic-treated mice. We observed that microbiota composition varied distinctly depending on the type of antibiotic administered.
Project description:We report the use of high-throughput sequencing technology to detect the microbial composition and abundance of mice grastic contents before and after Helicobacter pylori infection or Lactobacillus paracasei ZFM54 pretreatment/treatment. The genomic DNA was obtained by the QIAamp PowerFecal DNA Kit. Then, the DNA samples were sent to BGI Genomics Co., Ltd. (Shenzhen, China) for V3-V4 region of the 16S rRNA gene high-throughput sequencing with an Illumina MiSeq platform. DNA samples were sequenced using primers 338F (forward primer sequence ACTCCTACGGGAGGCAGCAG)-806R (reverse primer sequence GGACTACHVGGGTWTCTAAT). The sequencing analyses were carried out using silva138/16s database as a reference for the assignation of Amplicon Sequence Variant (ASV) at 100% similarity.
Project description:Sensitive models of climate change impacts would require a better integration of multi-omics approaches that connect the abundance and activity of microbial populations. Here, we show that climate is a fundamental driver of the protein abundance of microbial populations (metaproteomics), yet not their genomic abundance (16S rRNA gene amplicon sequencing), supporting the hypothesis that metabolic activity may be more closely linked to climate than community composition.