Project description:We compared the transcriptional profiles of 12 E. coli O157:H7 isolates grown to stationary phase in LB broth. These isolates possess the same two enzyme PFGE profile and are related temporally or geographically to the above outbreak. These E. coli O157:H7 isolates included three clinical isolates, five isolates from separate bags of spinach, and single isolates from pasture soil, river water, cow feces, and a feral pig.
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:The model prokaryote Escherichia coli can exist as a either a commensal or a pathogen in the gut of diverse mammalian hosts. These associations, coupled with its ease of cultivation and genetic variability, have made E. coli a popular indicator organism for tracking the origin of fecal water contamination. Source tracking accuracy is predicated on the assumption that E. coli isolates recovered from contaminated water present a genetic signature characteristic of the host from which they originated. In this study, we compared the accuracy with which E. coli isolated from humans, bear, cattle and deer could be identified by standard fingerprinting methods used for library-based microbial source tracking (repetitive element PCR and pulsed-field gel electrophoresis) in relation to microarray-based analysis of genome content. Our results show that patterns of gene presence or absence were more useful for distinguishing E. coli isolates from different sources than traditional fingerprinting methods, particularly in the case of human strains. Host-associated differences in genome composition included the presence or absence of mobile IS1 elements as well as genes encoding the ferric dicitrate iron transporter (fec), E. coli common pilus (ECP), type 1 fimbriae and the CRISPR associated cas proteins. Many of these differences occurred in regions of the E. coli chromosome previously shown to be “hot spots” for the integration of horizontally-acquired DNA. PCR primers designed to amplify the IS1 and fec loci confirmed array results and demonstrated the ease with which gene presence/absence data can be converted into a diagnostic assay. The data presented here suggest that, despite the high level of genetic diversity observed among isolates by PFGE, human-derived strains may constitute a distinct ecotype distinguished by multiple potential library-independent source tracking markers.
Project description:We compared the transcriptional profiles of 12 E. coli O157:H7 isolates grown to stationary phase in LB broth. These isolates possess the same two enzyme PFGE profile and are related temporally or geographically to the above outbreak. These E. coli O157:H7 isolates included three clinical isolates, five isolates from separate bags of spinach, and single isolates from pasture soil, river water, cow feces, and a feral pig. Twelve condition experiment, 12 E. coli O157:H7 isolates. Two biological replicates for isolates RM6067, RM6069, RM6101, RM6102, RM6103, RM6149, RM6655, RM6658, RM9992, RM9997, RM9998 and RM10002 independently grown to stationary phase in LB at 37°C and harvested. One replicate per array. A type 2 gene expression experimental design was used, with fluorescently labeled genomic DNA as a reference channel in each experiment as described by Lucchini, S., et al. 2005. Infect Immun 73:88-102.
Project description:E. coli isolates from different CF patients demonstrate increased growth rate when grown with glycerol, a major component of fecal fat, as the sole carbon source compared to E. coli from healthy controls. CF and control E. coli isolates have differential gene expression when grown in minimal media with glycerol as the sole carbon source. While CF isolates display a growth promoting transcriptional profile, control isolates engage stress and stationary phase programs, which likely results in slower growth rates.
Project description:Strains of urinary tract associated E. coli both recent isolates and from the ECOR collection and non pathogenic E. coli strains were analyzed. Replicates were performed to establish the reproduciblity, then single experiments were performed there on.
Project description:Escherichia coli is an important human pathogen, among others a cause of severe diarrhea diseases and urinary tract infections. The ability to distinguish different pathogenic E. coli subspecies is crucial for correct treatment of the infection. Characterization and quantification of clinical isolates proteomes can provide details of the organisms’ metabolism and specific virulence factors. We performed a systematic quantitative proteomic analysis on a representative selection of 16 pathogenic and 2 commensal E. coli strains, together with 5 pathogenic Shigella strains. The analysis yielded a dataset of more than 4 thousand proteins, with an average of 2 thousand proteins per strain and 980 proteins common to all strains. Statistical comparison of label-free quantitative levels of 750 proteins, which were quantified in all strains, revealed that levels of a majority of the shared proteins vary substantially among specific strains. Theses quantitative protein profiles clearly distinguished E. coli strains from Shigella and largely separated commensal E. coli strains from intestinal and extraintestinal E. coli isolates.
Project description:The model prokaryote Escherichia coli can exist as a either a commensal or a pathogen in the gut of diverse mammalian hosts. These associations, coupled with its ease of cultivation and genetic variability, have made E. coli a popular indicator organism for tracking the origin of fecal water contamination. Source tracking accuracy is predicated on the assumption that E. coli isolates recovered from contaminated water present a genetic signature characteristic of the host from which they originated. In this study, we compared the accuracy with which E. coli isolated from humans, bear, cattle and deer could be identified by standard fingerprinting methods used for library-based microbial source tracking (repetitive element PCR and pulsed-field gel electrophoresis) in relation to microarray-based analysis of genome content. Our results show that patterns of gene presence or absence were more useful for distinguishing E. coli isolates from different sources than traditional fingerprinting methods, particularly in the case of human strains. Host-associated differences in genome composition included the presence or absence of mobile IS1 elements as well as genes encoding the ferric dicitrate iron transporter (fec), E. coli common pilus (ECP), type 1 fimbriae and the CRISPR associated cas proteins. Many of these differences occurred in regions of the E. coli chromosome previously shown to be M-bM-^@M-^\hot spotsM-bM-^@M-^] for the integration of horizontally-acquired DNA. PCR primers designed to amplify the IS1 and fec loci confirmed array results and demonstrated the ease with which gene presence/absence data can be converted into a diagnostic assay. The data presented here suggest that, despite the high level of genetic diversity observed among isolates by PFGE, human-derived strains may constitute a distinct ecotype distinguished by multiple potential library-independent source tracking markers. Twelve isolates of E. coli ( 3 from bear, 3 from cattle, 3 from deer and 3 from humans) were isolated from feces and/or raw sewage. Genome content for each strain was assessed in duplicate using comparative genome hybridization with E. coli K12 MG1655 as the reference for a total of 24 arrays.
Project description:A food-borne outbreak of haemorrhagic colitis (HC) and HUS caused by E. coli O103:H25 occurred in Norway, 2006. The outbreak included 17 registered cases, of which 10 developed HUS. The aim of this study was to characterize two E. coli O103:H25 isolates from this outbreak. Only one of the isolates carry the stx2 gene (by PCR). Since they have the same typing profile by typing method MLVA, we expect the isolates to have identical gene content except from an Stx2-encoding phage. Therefore, we further investigate whether the Stx2-encoding phage has any impact on the gene expression. Keywords: mixed, gene expression, comparative genomic hybridization