Project description:This SuperSeries is composed of the following subset Series: GSE9640: Transcriptome Profiling of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola on two different medias GSE9643: Transcriptome Profiling of Xanthomonas oryzae pv. oryzae knockout mutants at different hybridization conditions and PMTs Keywords: SuperSeries Refer to individual Series
Project description:Transcription profiling of the DSF regulon in Xanthomonas oryzae pv. oryzae (Xoo) using wild type and the rpfF mutant. Cell-cell signaling mediated by the quorum sensing molecule known as Diffusible Signaling factor (DSF) is required for virulence of Xanthomonas group of plant pathogens. DSF in different Xanthomonas and the closely related plant pathogen Xylella fastidiosa regulates diverse traits in a strain specific manner. The transcriptional profiling performed in this study is to elucidate the traits regulated by DSF from the Indian isolate of Xanthomonas oryzae pv. oryzae, which exhibits traits very different from other Xanthomonas group of plant pathogen. In this study, transcription analysis was done between a wild type Xanthomonas oryzae pv. oryzae strain and an isogenic strain that has a mutation in the DSF biosynthetic gene rpfF.
Project description:OsEDS1 is a key regulator of SA-mediated immunity in plants. The OsEDS1 knockout mutant (Oseds1) was characterized and shown to have increased susceptibility to Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), suggesting the positive role of OsEDS1 in regulating rice disease resistance. To identify differentially regulated downstream of Oseds1, we performed transcriptome deep sequencing (RNA-seq) of wild type (ZH11) and Oseds1 inoculated with Xanthomonas oryzae pv. Oryzae (PXO99A).
Project description:Transcription profiling of the DSF regulon in Xanthomonas oryzae pv. oryzae (Xoo) using wild type and the rpfF mutant. Cell-cell signaling mediated by the quorum sensing molecule known as Diffusible Signaling factor (DSF) is required for virulence of Xanthomonas group of plant pathogens. DSF in different Xanthomonas and the closely related plant pathogen Xylella fastidiosa regulates diverse traits in a strain specific manner. The transcriptional profiling performed in this study is to elucidate the traits regulated by DSF from the Indian isolate of Xanthomonas oryzae pv. oryzae, which exhibits traits very different from other Xanthomonas group of plant pathogen. In this study, transcription analysis was done between a wild type Xanthomonas oryzae pv. oryzae strain and an isogenic strain that has a mutation in the DSF biosynthetic gene rpfF. Agilent one-color experiment, Organism: Xanthomonas oryzae, Agilent-025096 Genotypic Technology Pvt. Ltd. designed Custom Xanthomonas oryzae 8x15k, Labeling kit: Agilent Quick-Amp labeling Kit (p/n5190-0442).
Project description:Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are important bacterial pathogens of the worldwide staple and grass model, rice. Xoo invades rice vascular tissue to cause bacterial leaf blight, a serious disease of rice throughout the world. Xoc colonizes the parenchyma tissue to cause bacterial leaf steak, a disease of emerging importance. We have designed oligonucleotide probes (50-70-mers) represented 2,858 Xoo genes and 1,816 Xoc genes annotated by The Institute for Genomic Research (TIGR). To validate the Xo arrays, self-hybridization samples and tests of the non-specific hybridization using randomly spotted oligonucleotides corresponding to the hygromycin phosphotransferase gene (hph), and blank spot and of the correlation coefficient between biological replicates as well as between duplicate spots revealed that the data generated from our oligo array were highly reliable and consistent. To demonstrate application of Xo array, we performed expression profiling experiments on arrays hybridized with RNA of Xoo and Xoc grown in the two different nutrient-condition media. Several sets of genes involved in bacterial movement, chemotaxis, and hrp genes differentially express in response to different treatment. Due to comprehensive views of microarray study, extended biological events of plant-bacteria interaction was described. This publicly available microarray for Xanthomonas oryzae (Xo) is an enabling resource for a large and international community of scientists to better understand not only Xo biology but also many other Xanthomonas species that cause significant losses on crops. Keywords: Media condition response
Project description:Gene expression profiling of upland cotton line Im216 to inoculation with Xanthomonas campestris pv. malvacearum race 1. Fifth or sixth leaves of the bacterial blight-resistant cotton line Im216, which had been grown in a plant growth chamber, were infiltrated with a suspension of about 5x10^6 colony-forming units ml^-1 of Xanthomonas campestris pv. malvacearum race 1 in sterile saturated CaCO3 solution or were not inoculated (control). Keywords: Time-course
Project description:microRNAs can play a crucial role in stress response in plants, including biotic stress. Some miRNAs are known to respond to bacterial infection. This work has addressed the role of miRNAs in Manihot esculenta (cassava)-Xanthomonas axonopodis pv. manihotis (Xam) interaction. Illumina sequencing was used for analyzing small RNA libraries from cassava tissue infected and non-infected with Xam. Cassava variety MBRA685 (resistant to Xam-CIO151) Six-week-old plants were inoculated with 36h-old cultures of the aggressive Xanthomonas axonopodis pv. manihotis strain CIO151 in both leaves and stems.
Project description:Differentially expressed kinase genes in Rhizoctonia cerealis resistant wheat lines CI12633/Shanhongmai compared with the susceptible wheat line Wenmai 6 via Agilent Wheat Gene Expression Microarray assay. Goal was to identify the kinase genes whose expression was higher in CI12633/Shanhongmai compared with the susceptible wheat line Wenmai 6