Project description:Purpose: The goal of our study is to compare two different ecotypes of Oryza sativa L., PHS-susceptible rice trait and PHS-resistant rice trait under three different maturation stages in rice seed embryo with profile of miRNA-seq. Methods: Oryza sativa. L miRNA profiles of two different ecotypes with 3 different maturation stages of rice seed embryo were generated by NGS, in duplicate, following Illumina NGS workflow. Results: We found the differentially expressed microRNAs between PHS-susceptible rice trait and PHS-resistant rice trait according to the three different seed maturation stages. Target transcripts of differentially expressed microRNAs have been predicted via psRNATarget web server, and a part of those target genes are likely to be regulated by microRNAs, affecting overall responses to heat stress and the regulation of seed dormancy during maturation. Conclusions: Our study represents the analysis of rice seed small RNAs, specifically microRNAs, under two different ecotypes, three different seed maturation stages in rice seed embryo. Our results show that microRNAs are involved in response to heat stress and the regulation of seed dormancy. This study will provide a foundation for understanding dynamics of seed dormancy during the seed development and overcoming pre-harvest sprouting.
Project description:Malnutrition is a major underlying cause of mortality in children and women in low and middle-income countries, like Bangladesh. This is mostly due to the poor dietary diversity and where rice is the main staple food. This preliminary study has explored the potential for increased nutritional and health benefits from soaking rice in the traditional Bangladeshi style of traditional soaked rice Panta Bhat for its nutritional value and microbiome contents for possible nutritional and health benefits.
Project description:This study compared the proteomic differences of rice sorghum GJH1 and rice sorghum BTx623 during seed development in order to reveal the specific proteins of rice sorghum seed development.
Project description:Carbon (C) and nitrogen (N) contents of grain-filling stage are keys item that determined the growth of rice, and also the quality of seed. Therefore, to elucidating the mechanism of C/N signaling in a seed is an important problem for crops whose seed is used as food like rice. The DNA microarray analysis with the rice seed which was performed the additional fertilizer at the time of heading, in order to clarify how C/N signal change of the rhizosphere in seed production stage affects a seed component on a gene expression level.
Project description:As a species mostly planted in tropical and subtropical regions, rice is sensitive to chilling temperature, especially at reproductive stage. However, the effect of low temperature on seed development has not been well characterized. The transcriptome of two rice cultivars Zhonghua11 and Hanfeng were analyzed to characterize the gene regulatory networks of rice seed during low temperature treatment.
Project description:Purpose: The goal of our study is to compare two different ecotypes of Oryza sativa L., PHS-susceptible rice trait and PHS-resistant rice trait under three different maturation stages and two different tissues, embryo and endosperm of rice seeds with profile of RNA-seq. Methods: Oryza sativa. L mRNA profiles of two different ecotypes with 3 different maturation stages and 2 different tissues were generated by NGS, in duplicate, following Illumina NGS workflow. qRT–PCR validation was performed using SYBR Green assays. Results: We found the differentially expressed genes (DEGs) between PHS-susceptible rice trait and PHS-resistant rice trait according to the three different seed maturation stages. In DEGs, gene ontology (GO) analysis and Mapman analysis were performed, and we discovered genes related to plant hormones and heat stress, which are not yet reported. These genes were validated through qRT-PCR, and it is likely to be highly related to seed dormancy. Conclusions: Our study represents the analysis of rice seed transcriptomes under two different ecotypes, three different seed maturation stages and two different tissues (Embryo and endosperm). Our results show that seed dormancy is affected and regulated by a plant hormones and heat stress. This study might provide a foundation for understanding dynamics of seed dormancy during the seed development and overcoming pre-harvest sprouting.