Project description:The aim of the study will be to analyze the microbiome in the blood and stomach in patients with intestinal metaplasia (IM) and / or gastric cancer (GC). As far as IM is concerned, it has been found that the incomplete type is related to GC mainly intestinal-type. Studies show differences in the microbiome in patients with IM and in patients with GC, but do not specify whether these differences are related to histological types.
Our intention is to further analyze the microbiome based on histological types. Most studies on stomach cancer have focused on the microbiota of gastric microbiota. Recent data have shown that the microbiome of the small intestine, especially the mucosa, can play a key role in the condition of the gastrointestinal tract. Disturbance of the microbiome of the small intestine has been found in celiac disease, chronic liver disease, diabetes and irritable bowel syndrome. However, information on the role of the microbiome in IM remains limited.
Project description:The gastric barrier plays a major role in the maintanance of the distal intestinal microbiome composition. It has been shown before that the use of gastric acid suppression medication, such as proton pump inhibitors, are associated with distinctive alterations of the intestinal microbiome. Foremost, the invasion of predominantly oral bacteria, like Veillonella and Streptococcus species, were a resurring finding in previous reports.
Gastric cancer treatment includes the total or subtotal resection of the stomach which can influence the gastric acid production. However, the influence by alterations in gastric milieu after this treatment on the composition of the intestinal microbiome is not well studied.
Therefore, the intestinal microbiome of patients after total or subtotal gastrectomy and its influence on intestinal inflammation and gut permeability will be studied.
Project description:We explore whether a low-energy diet intervention for Metabolic dysfunction-associated steatohepatitis (MASH) improves liver disease by means of modulating the gut microbiome. 16 individuals were given a low-energy diet (880 kcal, consisting of bars, soups, and shakes) for 12 weeks, followed by a stepped re-introduction to whole for an additional 12 weeks. Stool samples were obtained at 0, 12, and 24 weeks for microbiome analysis. Fecal microbiome were measured using 16S rRNA gene sequencing. Positive control (Zymo DNA standard D6305) and negative control (PBS extraction) were included in the sequencing. We found that low-energy diet improved MASH disease without lasting alterations to the gut microbiome.