Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:Whole transcriptome RNA sequencing in brain tissue was generated to explore differences between young and old animals of two closely related species of deer mice (genus Peromyscus) that reportedly differ in their lifespans: P. leucopus that lives for up to 8 years and P. maniculatus that exhibits a lifespan of about 4 years.
Project description:Metagenome data from soil samples were collected at 0 to 10cm deep from 2 avocado orchards in Channybearup, Western Australia, in 2024. Amplicon sequence variant (ASV) tables were constructed based on the DADA2 pipeline with default parameters.
Project description:Currently, most tools utilized in host-pathogen interaction studies depend on the use of human or mouse (Mus musculus) cells and tissues. While these species have led to countless breakthroughs in our understanding of infectious disease, there are undoubtably important biological processes that are missed by limiting studies to these two vertebrate species. For instance, it is well-established that the most common North American rodent, the Peromyscus leucopus deermouse, has unique interactions with microbes, which likely shape its ability to serve as a critical reservoir for at numerous zoonotic pathogens—including a Lyme disease spirochete, Borrelia burgdorferi. In this work, we expand the immunological toolkit to study P. leucopus biology by performing the first differentiation of deermouse bone marrow to macrophages using P. leucopus M-CSF producing HEK293T cells.