Project description:The aim of this study was to acquire a better understanding of porcine reproductive and respiratory syndrome (PRRS) disease through a deeper knowledge of gene expression changes that occur in pulmonary lymph nodes by comparing PRRS virus (PRRSV), porcine circovirus type 2 (PCV-2), and swine influenza virus (IAV-S) infections. The PRRSV, IAV-S and PCV-2 viral infections followed a clinical course in these domestic pigs typical of experimental infection of young pigs with these viruses. PRRSV isolate SDSU-73 was pathogenic in this study inducing fever, anorexia, listlessness, and dyspnea.
Project description:This study used virological, histological, and global gene expression data to compare the virulence of two 2009 pH1N1 isolates from human (A/California/04/2009) and swine (A/swine/Alberta/25/2009) to that of a 1918-like classical swine influenza virus (A/swine/Iowa/1930) in a pig model of infection. The overall goal of this study was to characterize the clinical, histological, virological and global gene expression responses to three distinct influenza A isolates in an experimental pig model of influenza infection. We compared the pathogenesis of two pH1N1 viruses, one derived from a human patient (A/CA/04/09 [CA09]) and the other from swine (A/swine/Alberta/25/2009 [Alb09]), with that of the 1918-like classical swine influenza virus (A/swine/Iowa/1930 [IA30]) in the pig model. Both pH1N1 isolates induced clinical symptoms such as coughing, sneezing, decreased activity, fever, and labored breathing in challenged pigs, but IA30 virus did not cause any clinical symptoms except fever. Although both the pH1N1 viruses and the IA30 virus caused lung lesions, the pH1N1 viruses were shed from the nasal cavities of challenged pigs whereas the IA30 virus was not. Microarray was used to assess global gene expression in the lungs at 3 and 5 days post-infection. Crossbred pigs fwere obtained from a healthy herd free of SIV and porcine reproductive and respiratory syndrome virus. These studies included two experiments: the classical H1N1 SIV (IA30) study was completed at Kansas State University's biosafety level 2 (BSL-2) facility in compliance with the Institutional Animal Care and Use Committee at Kansas State University, and the pH1N1 virus study was completed at the Central States Research Center (CSRC), Inc., BSL-3 facility (Oakland, NE), in compliance with the Institutional Animal Care and Use Committee at CSRC. In each experiment, 10 pigs were inoculated with noninfectious cell culture supernatant as controls. For the classical H1N1 SIV experiment, 10 4-week-old crossbred pigs were inoculated intratracheally with 10^6 50% tissue culture infective doses (TCID50)/pig of egg-derived IA30 virus. For the pH1N1 virus experiment, 10 4-week-old crossbred pigs were inoculated intratracheally with 10^6 TCID50/pig of either egg-derived CA/09 or Alb/09 virus. Five animals per group were euthanized at 3 and 5 days postinfection (dpi), respectively.
Project description:Swine influenza virus (SIV) is a prevalent respiratory pathogen in pigs that has deleterious consequences to animal health, production, and public health. Pigs represent an important reservoir for influenza as well as a potential mixing vessel for novel gene reassortments. Despite the central role of the pig in the 2009 pandemic and 2012 variant H3N2 outbreak, much remains unknown about the impact of swine immunity on SIV transmission, pathogenesis, and evolution. An incomplete understanding of interactions between the porcine immune system and SIV has hindered the development of new diagnostic tools and CD8+ T cell influenza epitope based vaccines. In order to address this gap in knowledge, we identified swine leukocyte antigen (SLA) restricted influenza virus peptides presented by swine respiratory epithelial cells using an immunoproteomics approach. The majority of MHC associated peptides belonged to matrix 1, nucleocapsid, and nonstructural 1 proteins. Specific epitopes, such as M1229-242, NS177-89, and NP417-426, may have value in epitope based vaccines. Future investigations examining the potential cross-reactive nature of these peptides are needed to confirm antigen recognition by cytotoxic T lymphocytes and utility as vaccine candidates.
Project description:Understanding the pulmonary adaptive immune system of pigs is of importance as respiratory pathogens present a major challenge for swine producers and pigs are increasingly used to model human pulmonary diseases. Single-cell RNA sequencing (scRNAseq) has accelerated the characterization of cellular phenotypes in the pig respiratory tract under both healthy and diseased conditions. However, combining scRNAseq with recovery of paired VJ and VDJ T cell receptor (TCR) as well as heavy (IGH) and light (IGL) chains of B cell receptors (BCR) to interrogate receptor repertoires has not to our knowledge been demonstrated for pigs. Here, we developed primers to enrich porcine TCR and BCR chains that are compatible with the 10x Genomics VDJ sequencing protocol. Using these pig-specific assays, we sequenced the T and B cell receptors of cryopreserved lung cells from CD1D-expressing and -deficient pigs after one or two infections with influenza A virus (IAV), a major swine and human respiratory pathogen, to examine whether natural killer T (NKT) cells alter pulmonary TCR and BCR repertoire selection. We also performed paired single-cell RNA and TCR sequencing of FACS-sorted T cells longitudinally sampled from the lungs of IAV-vaccinated and -infected pigs to track clonal expansion in response to IAV exposure. All pigs presented highly diverse repertoires. Pigs re-exposed to influenza antigens from either vaccination or infection exhibited higher numbers of expanded CD4 and CD8 T cell clonotypes with activated phenotypes, suggesting potential IAV reactive T cell populations. Our results demonstrate the utility of high throughput single-cell TCR and BCR sequencing in pigs.
Project description:In recent years, the roles of microRNAs playing in the regulation of influenza viruses replication caused researchers' much attenion. However, much work focused on the interactions between human, mice or chicken microRNAs with human or avian influenza viruses rather than the interactions of swine microRNAs and swine influenza viruses. To investigate the roles of swine microRNAs playing in the regulation of swine influenza A virus replication, the microRNA microarray was performed to identify which swine microRNAs were involved in swine H1N1/2009 influenza A virus infection.
Project description:As a mild, highly contagious, respiratory disease, swine influenza always damages the innate immune systems, and increases susceptibility to secondary infections which results in considerable morbidity and mortality in pigs. Nevertheless, the systematical host response of pigs to swine influenza virus infection remains largely unknown. To explore these, a time-course gene expression profiling was performed to detect comprehensive analysis of the global host response induced by H1N1 swine influenza virus in pigs.
Project description:This study used virological, histological, and global gene expression data to compare the virulence of two 2009 pH1N1 isolates from human (A/California/04/2009) and swine (A/swine/Alberta/25/2009) to that of a 1918-like classical swine influenza virus (A/swine/Iowa/1930) in a pig model of infection. The overall goal of this study was to characterize the clinical, histological, virological and global gene expression responses to three distinct influenza A isolates in an experimental pig model of influenza infection. We compared the pathogenesis of two pH1N1 viruses, one derived from a human patient (A/CA/04/09 [CA09]) and the other from swine (A/swine/Alberta/25/2009 [Alb09]), with that of the 1918-like classical swine influenza virus (A/swine/Iowa/1930 [IA30]) in the pig model. Both pH1N1 isolates induced clinical symptoms such as coughing, sneezing, decreased activity, fever, and labored breathing in challenged pigs, but IA30 virus did not cause any clinical symptoms except fever. Although both the pH1N1 viruses and the IA30 virus caused lung lesions, the pH1N1 viruses were shed from the nasal cavities of challenged pigs whereas the IA30 virus was not. Microarray was used to assess global gene expression in the lungs at 3 and 5 days post-infection.
Project description:As a mild, highly contagious, respiratory disease, swine influenza always damages the innate immune systems, and increases susceptibility to secondary infections which results in considerable morbidity and mortality in pigs. Nevertheless, the systematical host response of pigs to swine influenza virus infection remains largely unknown. To explore these, a time-course gene expression profiling was performed to detect comprehensive analysis of the global host response induced by H1N1 swine influenza virus in pigs. At the age of day 35, 15 pigs were randomly allocated to the non-infected group and 15 to the infected group. Each piglet of the infected group was intranasaly challenged with A/swine/Hubei/101/2009(H1N1) strain and Each piglet of the non-infected group was treated similarly with an identical volume of PBS as control.
Project description:In order to identify the swine genes which play roles in the regulation of swine influenza A virus replication, the gene microarray was performed to explore the systematical host response to the swine H1N1/2009 influenza A virus infection in porcine cells.
Project description:The determinants of influenza transmission remain poorly understood. Swine influenza viruses preferentially attach to receptors found in the upper airways; however, most swine influenza viruses fail to transmit efficiently from swine to humans, and from human-to-human. The pandemic 2009 H1N1 (H1N1pdm) virus was a rare exception of a swine virus that acquired efficient transmissibility from human-to-human, and is reflected in efficient respiratory droplet transmission in ferrets. We hypothesize that virus-induced host responses in the upper airways correlate with airborne transmission in ferrets. To address this question, we used the H1N1pdm virus and swine influenza A/swine/Hong Kong/201/2010 (HK201) virus that has comparable titre in the ferret nasopharynx, but it exhibits differential transmissibility in ferrets via respiratory droplet route. We performed a transcriptomic analysis of tissues from the upper and lower respiratory tract from ferrets infected with either H1N1pdm or HK201 viruses using ferret-specific Agilent oligonucleotide arrays. We found differences in the kinetics of the innate immune response elicited by these two viruses that varied across tissues.